51單片機溫度感測器課程設計
A. 用AT89C51單片機和溫度感測器DS18B20S設計數字式溫度計
江蘇省聯合職業技術學院常州旅遊商貿分院
專科畢業論文
基於單片機及DS18B20溫度感測器的數字溫度計設計
姓 名:(××××××××3號黑體)
學 號:(××××××××3號黑體)
班 級:(聯院班級號×××3號黑體)
專 業:(××××××××3號黑體)
指導教師:(××××××××3號黑體)
系 部:創意信息系××××3號黑體)
二〇二0年××月××日
摘 要
本設計採用的主控晶元是ATMEL公司的AT89S52單片機,數字溫度感測器是DALLAS公司的DS18B20。本設計用數字感測器DS18B20測量溫度,測量精度高,感測器體積小,使用方便。所以本次設計的數字溫度計在工業、農業、日常生活中都有廣泛的應用。
單片機技術已經廣泛應用社會生活的各個領域,已經成為一種非常實用的技術。51單片機是最常用的一種單片機,而且在高校中都以51單片機教材為藍本,這使得51單片機成為初學單片機技術人員的首選。本次設計採用的AT89S52是一種flash型單片機,可以直接在線編程,向單片機中寫程序變得更加容易。本次設計的數字溫度計採用的是DS18B20數字溫度感測器,DS18B20是一種可組網的高精度數字式溫度感測器,由於其具有單匯流排的獨特優點,可以使用戶輕松地組建起感測器網路,並可使多點溫度測量電路變得簡單、可靠。
本設計根據設計要求,首先設計了硬體電路,然後繪制軟體流程圖及編寫程序。本設計屬於一種多功能溫度計,溫度測量范圍是-55℃到125℃。溫度值的解析度可以被用戶設定為9-12位,可以設置上下限報警溫度,當溫度不在設定的范圍內時,就會啟動報警程序報警。本設計的顯示模塊是用四位一體的數碼管動態掃描顯示實現的。在顯示實時測量溫度的模式下還可以通過查詢按鍵查看設定的上下限報警溫度。
關鍵詞:單片機、數字溫度計、DS18B20、AT89S52
目 錄
1 引言 1
2 系統總體方案及硬體設計 2
2.1 系統總體方案 2
2.1.1系統總體設計框圖 2
2.1.2各模塊簡介 2
2.2 系統硬體設計 6
2.2.1 單片機電路設計 6
2.2.2 DS18B20溫度感測器電路設計 6
2.2.3 顯示電路設計 7
2.2.4 按鍵電路設計 7
2.2.5 報警電路設計 8
3 軟體設計 9
3.1 DS18B20程序設計 9
3.1.1 DS18B20感測器操作流程 9
3.1.2 DS18B20感測器的指令表 9
3.1.3 DS18B20感測器的初始化時序 10
3.1.4 DS18B20感測器的讀寫時序 10
3.1.5 DS18B20獲取溫度程序流程圖 11
3.2 顯示程序設計 13
3.3 按鍵程序設計 13
4實物製作及調試 14
5電子綜合設計體會 15
參考文獻 16
1 引言
本系統所設計的數字溫度計採用的是DS18B20數字溫度感測器測溫,DS18B20直接輸出的就是數字信號,與傳統的溫度計相比,具有讀數方便,測溫范圍廣,測溫准確,上下限報警功能。其輸出溫度採用LED數碼管顯示,主要用於對測溫比較准確的場所。
該設計控制器使用的是51單片機AT89S52,AT89S52單片機在工控、測量、儀器儀表中應用還是比較廣泛的。測溫感測器使用的是DS18B20,DS18B20是一種可組網的高精度數字式溫度感測器,由於其具有單匯流排的獨特優點,可以使用戶輕松地組建起感測器網路,並可使多點溫度測量電路變得簡單、可靠。顯示是用4位共陰極LED數碼管實現溫度顯示,LED數碼管的優點是顯示數字比較大,查看方便。蜂鳴器用來實現當測量溫度超過設定的上下限時的報警功能。
2 系統總體方案及硬體設計
2.1 系統總體方案
2.1.1系統總體設計框圖
由於DS18B20數字溫度感測器具有單匯流排的獨特優點,可以使用戶輕松地組建起感測器網路,並可使多點溫度測量電路變得簡單、可靠,所以在該設計中採用DS18B20數字溫度感測器測量溫度。
溫度計電路設計總體設計框圖如圖2-1所示,控制器採用單片機AT89S52,溫度感測器採用DS18B20,顯示採用4位LED數碼管,報警採用蜂鳴器、LED燈實現,鍵盤用來設定報警上下限溫度。
圖2-1 溫度計電路總體設計框圖
2.1.2各模塊簡介
1.控制模塊
AT89S52單片機是美國ATMEL公司生產的低功耗,高性能CMOS 8位單片機,片內含有8kb的可系統編程的Flash只讀程序存儲器,器件採用ATMEL公司的高密度、非易失性存儲技術生產,兼容標准8051指令系統及引腳。在單晶元上,擁有靈巧的8 位CPU 和在系統可編程的Flash,使得AT89S52為眾多嵌入式控制應用系統提供高靈活、超有效的解決方案。
AT89S52具有以下標准功能:8k位元組Flash,256位元組RAM,32 位I/O 口線,看門狗定時器,2 個數據指針,三個16 位定時器/計數器,一個6向量2級中斷結構,全雙工串列口,片內晶振及時鍾電路。另外,AT89S52 可降至0Hz 靜態邏輯操作,支持2種軟體可選擇節電模式。空閑模式下,CPU停止工作,允許RAM、定時器/計數器、串口、中斷繼續工作。掉電保護方式下,RAM內容被保存,振盪器被凍結,單片機一切工作停止,直到下一個中斷或硬體復位為止。
2.顯示模塊
顯示電路採用4位共陰LED數碼管,從P0口輸出段碼,P2口的高四位為位選端。用動態掃描的方式進行顯示,這樣能有效節省I/O口。
3.溫度感測器模塊
DS18B20溫度感測器是美國DALLAS半導體公司最新推出的一種改進型智能溫度感測器,與傳統的熱敏電阻等測溫元件相比,它能直接讀出被測溫度,並且可根據實際要求通過簡單的編程實現9~12位的數字值讀數方式。DS18B20的性能特點如下:獨特的單線介面僅需要一個埠引腳進行通信;多個DS18B20可以並聯在惟一的三線上,實現多點組網功能;無須外部器件;可通過數據線供電,電壓范圍為3.0~5.5v;零待機功耗;溫度以9或12位二進制數字表示;用戶可定義報警設置;報警搜索命令識別並標志超過程序限定溫度(溫度報警條件)的器件;負電壓特性,電源極性接反時,溫度計不會因發熱而燒毀,但不能正常工作;
DS18B20採用3腳TO-92封裝或8腳SO或µSOP封裝,其其封裝形式如圖2-2所示。
圖2-2 DS18B20的封裝形式
DS18B20的64位ROM的結構開始8位是產品類型的編號,接著是每個器件的惟一的序號,共有48位,最後8位是前面56位的CRC檢驗碼,這也是多個DS18B20可以採用一線進行通信的原因。溫度報警觸發器TH和TL,可通過軟體寫入戶報警上下限。
DS18B20溫度感測器的內部存儲器還包括一個高速暫存RAM和一個非易失性的可電擦除的EEPRAM。高速暫存RAM的結構為8位元組的存儲器,結構如圖2-3所示。
圖2-3 DS18B20的高速暫存RAM的結構
頭2個位元組包含測得的溫度信息,第3和第4位元組TH和TL的拷貝是易失的,每次上電復位時被刷新。第5個位元組,為配置寄存器,它的內容用於確定溫度值的數字轉換解析度,DS18B20工作時寄存器中的解析度轉換為相應精度的溫度數值,該位元組各位的定義如表2-1所示。
表2-1:配置寄存器
D7 D6 D5 D4 D3 D2 D1 D0
TM
R1
R0
1
1
1
1
1
配置寄存器的低5位一直為1,TM是工作模式位,用於設置DS18B20在工作模式還是在測試模式,DS18B20出廠時該位被設置為0,用戶要去改動,R1和R0決定溫度轉換的精度位數,來設置解析度,「R1R0」為「00」是9位,「01」是10位,「10」是11位,「11」是12位。當DS18B20解析度越高時,所需要的溫度數據轉換時間越長。因此,在實際應用中要將解析度和轉換時間權衡考慮。
高速暫存RAM的第6、7、8位元組保留未用,表現為全邏輯1。第9位元組讀出前面所有8位元組的CRC碼,可用來檢驗數據,從而保證通信數據的正確性。
當DS18B20接收到溫度轉換命令後,開始啟動轉換。轉換完成後的溫度值就以16位帶符號擴展的二進制補碼形式存儲在高速暫存存儲器的第1、2位元組。單片機可以通過單線介面讀出該數據,讀數據時低位在先,高位在後,數據格式以0.0625℃/LSB形式表示。
當符號位s=0時,表示測得的溫度值為正值,可以直接將二進制位轉換為十進制;當符號位s=1時,表示測得的溫度值為負值,要先將補碼變成原碼,再計算十進制數值。輸出的二進制數的高5位是符號位,最後4位是溫度小數點位,中間7位是溫度整數位。表2-2是一部分溫度值對應的二進制溫度數據。
表2-2 DS18B20輸出的溫度值
溫度值
二進制輸出
十六進制輸出
+125℃
0000 0111 1101 0000
07D0h
+85℃
0000 0101 0101 0000
0550h
+25.0625℃
0000 0001 1001 0001
0191h
+10.125℃
0000 0000 1010 0010
00A2h
+0.5℃
0000 0000 0000 1000
0008h
0℃
0000 0000 0000 0000
0000h
-0.5℃
1111 1111 1111 1000
FFF8h
-10.125℃
1111 1111 0101 1110
FF5Eh
-25.0625℃
1111 1110 0110 1111
FF6Fh
-55℃
1111 1100 1001 0000
FC90h
DS18B20完成溫度轉換後,就把測得的溫度值與RAM中的TH、TL位元組內容作比較。若T>TH或T<TL,則將該器件內的報警標志位置位,並對主機發出的報警搜索命令作出響應。因此,可用多隻DS18B20同時測量溫度並進行報警搜索。在64位ROM的最高有效位元組中存儲有循環冗餘檢驗碼(CRC)。主機ROM的前56位來計算CRC值,並和存入DS18B20的CRC值作比較,以判斷主機收到的ROM數據是否正確。
4.調節模塊介紹
調節模塊是由四個按鍵接地後直接接單片機的I/O口完成的。當按鍵沒有按下時單片機管腳相當於懸空,默認下為高電平,當按鍵按下時相當於把單片機的管腳直接接地,此時為低電平。程序設計為低電平觸發。
5.報警模塊介紹
報警模塊是由一個PNP型的三極體9012驅動的5V蜂鳴器,和一個加一限流電阻的發光二極體組成的。報警時蜂鳴器間歇性報警,發光二極體閃爍。
2.2 系統硬體設計
2.2.1 單片機電路設計
圖2-4 單片機最小系統原理圖
單片機最小系統是由晶振電路,上電復位、按鍵復位電路,ISP下載介面和電源指示燈組成。原理圖如圖2-4所示。
2.2.2 DS18B20溫度感測器電路設計
DS18B20溫度感測器是單匯流排器件與單片機的介面電路採用電源供電方。
電源供電方式如圖2-7,此時DS18B20的1腳接地,2腳作為信號線,3腳接電源。
圖2-7 DS18B20電源供電方式
當DS18B20處於寫存儲器操作和溫度A/D轉換操作時,匯流排上必須有強的上拉,上拉開啟時間最大為10us。採用寄生電源供電方式時VDD端接地。由於單線制只有一根線,因此發送介面必須是三態的。
2.2.3 顯示電路設計
顯示電路是由四位一體的共陰數碼管進行顯示的,數碼管由三極體9013驅動。
四位一體的共陰數碼管的管腳分布圖如圖2-5所示。
圖2-5 四位一體的共陰數碼管管腳分布圖
顯示電路的總體設計如圖2-6所示。
圖2-6 顯示電路
2.2.4 按鍵電路設計
按鍵電路是用來實現調節設定報警溫度的上下限和查看上下報警溫度的功能。電路原理圖如圖2-10所示。
圖2-10 按鍵電路原理圖
2.2.5 報警電路設計
報警電路是在測量溫度大於上限或小於下限時提供報警功能的電路。該電路是由一個蜂鳴器和一個紅色的發光二極體組成,具體的電路如圖2-9所示。
圖2-9 報警電路原理圖
3 軟體設計
3.1 DS18B20程序設計
3.1.1 DS18B20感測器操作流程
根據DS18B20的通訊協議,主機(單片機)控制DS18B20完成溫度轉換必須經過三個步驟:
• 每一次讀寫之前都要對DS18B20進行復位操作
• 復位成功後發送一條ROM指令
• 最後發送RAM指令
這樣才能對DS18B20進行預定的操作。復位要求主CPU將數據線下拉500μs,然後釋放,當DS18B20收到信號後等待16~60μs左右,後發出60~240μs的存在低脈沖,主CPU收到此信號表示復位成功。
DS18B20的操作流程如圖3-1所示。
如圖3-1 DS18B20的操作流程
3.1.2 DS18B20感測器的指令表
DS18B20感測器的操作指令如表3-1所示。感測器復位後向感測器寫相應的命令才能實現相應的功能。
表3-1 DS18B20的指令表
指 令
指令代碼
功 能
讀ROM
0x33
讀DS1820溫度感測器ROM中的編碼(即64位地址)
符合 ROM
0x55
發出此命令之後,接著發出 64 位 ROM 編碼,訪問單匯流排上與該編碼相對應的 DS1820 使之作出響應,為下一步對該 DS1820 的讀寫作準備。
搜索 ROM
0xF0
用於確定掛接在同一匯流排上 DS1820 的個數和識別 64 位 ROM 地址。為操作各器件作好准備。
跳過 ROM
0xCC
忽略 64 位 ROM 地址,直接向 DS1820 發溫度變換命令。適用於單片工作。
告警搜索命令
0xEC
執行後只有溫度超過設定值上限或下限的片子才做出響應。
溫度變換
0x44
啟動DS1820進行溫度轉換,12位轉換時最長為750ms(9位為93.75ms)。結果存入內部9位元組RAM中。
讀暫存器
0xBE
讀內部RAM中9位元組的內容
寫暫存器
0x4E
發出向內部RAM的3、4位元組寫上、下限溫度數據命令,緊跟該命令之後,是傳送兩位元組的數據。
復制暫存器
0x48
將RAM中第3 、4位元組的內容復制到EEPROM中。
重調 EEPROM
0xB8
將EEPROM中內容恢復到RAM中的第3 、4位元組。
讀供電方式
0xB4
讀DS1820的供電模式。寄生供電時DS1820發送「 0 」,外接電源供電 DS1820發送「 1 」。
3.1.3 DS18B20感測器的初始化時序
DS18B20感測器為單匯流排結構器件,在讀寫操作之前,感測器晶元應先進性復位操作也就是初始化操作。
DS18B20的初始化時序如圖3-2所示。首先控制器拉高數據匯流排,接著控制器給數據匯流排一低電平,延時480μs,控制器拉高數據匯流排,等待感測器給數據線一個60-240μs的低電平,接著上拉電阻將數據線拉高,這樣才初始化完成。
圖3-2 DS18B20初始化時序
3.1.4 DS18B20感測器的讀寫時序
1.寫時序
DS18B20感測器的讀寫操作是在感測器初始化後進行的。每次操作只能讀寫一位。
當主機把數據線從高電平拉至低電平,產生寫時序。有兩種類型的寫時序:寫「0」時序,寫「1」時序。所有的時序必須有最短60μs的持續期,在各個寫周期之間必須有最短1μs的恢復期。
在數據匯流排由高電平變為低電平之後,DS18B20在15μs至60μs的時間間隙對匯流排采樣,如果為「1」則向DS18B20寫「1」, 如果為「0」則向DS18B20寫「0」。如圖3-2的上半部分。
對於主機產生寫「1」時序時,數據線必須先被拉至低電平,然後被釋放,使數據線在寫時序開始之後15μs內拉至高電平。
對於主機產生寫「1」時序時,數據線必須先被拉至低電平,且至少保持低電平60μs。
2.讀時序
在數據匯流排由高電平變為低電平之後,數據線至少應保持低電平1μs,來自DS18B20的輸出的數據在下降沿15μs後有效,所以在數據線保持低電平1μs之後,主機將數據線拉高,等待來自DS18B20的數據變化,在下降沿15μs之後便可開始讀取DS18B20的輸出數據。整個讀時序必須有最短60μs的持續期。如圖3-2的下半部分。讀時序結束後數據線由上拉電阻拉至高電平。
圖3-3 DS18B20感測器的讀寫時序
3.1.5 DS18B20獲取溫度程序流程圖
DS18B20的讀位元組,寫位元組,獲取溫度的程序流程圖如圖3-3所示。
圖3-4 DS18B20程序流程圖
3.2 顯示程序設計
顯示電路是由四位一體的數碼管來實現的。由於單片機的I/O口有限,所以數碼管採用動態掃描的方式來進行顯示。程序流程圖如圖3-4所示。
圖3-5 顯示程序流程圖
3.3 按鍵程序設計
按鍵是用來設定上下限報警溫度的。具體的程序流程圖如圖3-5所示。
圖3-6 按鍵程序流程圖
4實物製作及調試
製作好的實物如圖4-1所示。
圖4-1 數字溫度計實物正面圖
在做實物時出現了不少問題。比如本來是採用NPN型9013驅動蜂鳴器,但是在實際調試中蜂鳴器驅動不了,經多次試驗,在三極體的基極電阻與單片機的介面處接一個1、2kΩ的上拉電阻就能驅動了。但考慮到單片機的I/O口默認狀態時為高電平,這樣一上電蜂鳴器就會響,所以將NPN型9013換成了PNP型的9012三極體,效果還不錯。
5電子綜合設計體會
經過將近一個月的設計、焊接、編程、調試,我們終於完成了數字溫度計的設計,基本能夠達到設計要求,而且還設計了一些其他功能,比可以開啟或消除按鍵音功能,開機動畫功能,查看報警上下限溫度功能。
此次的設計使我從中學到了一些很重要的東西,那就是如何從理論到實踐的轉化,怎樣將我們所學到的知識運用到實踐中去。在大學課堂的學習只是給我們灌輸專業知識,而我們應把所學的知識應用到我們現實的生活中去。這次的設計不僅使我們將課堂上學到的理論知識與實際應用結合了起來,而且使我們對電子電路、電子元器件、印製電路板等方面的知識有了更進一步的認識,同時在軟體編程、焊板調試、相關調試儀器的使用等方面得到較全面的鍛煉和提高,為今後能夠獨立進行某些單片機應用系統的開發設計工作打下一定的基礎。此次單片機設計也為我們以後進行更復雜的單片機系統設計提供了寶貴的經驗。
在本次設計的過程中,我們遇到不少的問題,剛開始焊好的板子下不進去程序,經過一再仔細的檢查,才發現是在下載口處出了問題,由於焊盤口比較小,排針插不進去,最後使了很大力氣才插進去,插進去後才發現壞了,結果在去排針的時候把焊盤給去下來了,最後只能在旁邊將下載口引了出來。還有就是文章中提到的蜂鳴器驅動問題等等。經過此次的硬體製作與調試,鍛煉了我們的動手實踐能了。本次設計的另一個重點就是軟體程序的設計,其中需要有很巧妙的程序演算法,雖然以前寫過幾次程序,但我覺的寫好一個程序並不是一件簡單的事,有好多的東西,只有我們去試著做了,才能真正的掌握,只學習理論,有些東西是很難理解的,更談不上掌握。
通過此次的綜合設計,我們初步掌握了單片機系統設計的基本原理。充分認識到理論學習與實踐相結合的重要性,對於書本上的很多知識,不但要學會,更重要的是會運用到實踐中去。在以後的學習中,我們會更加註重實踐方面的鍛煉,多提高自己的動手實踐能力。
參考文獻
[1] 譚浩強.C程序設計(第三版).北京:清華大學出版社,2005.7 .
[2] 余發山,王福忠.單片機原理與應用技術.徐州:中國礦業大學出版社,2008.6 .
[3] 求是科技.單片機典型模塊設計實例導航.北京:人民郵電出版社,2005.5 .
[4] 求是科技.8051系列單片機C程序設計完全手冊.北京:人民郵電出版社,2006.4 .
[5] 於永,戴佳,劉波.51單片機C語言常用模塊與綜合系統設計實例精講(第2版).北京:電子工業出版社,2008.10 .
[6]劉騰遠.基於單片機的溫度控制系統設計[J].科技經濟導刊,2018(01):77-78.
[7]蘇康友.基於51單片機的無線溫度控制系統設計[J].電子技術與軟體工程,2017(10):250-251.
[8]劉豐年.基於AT89C51的簡易智能化加濕器設計[J].三門峽職業技術學院學報,2016,15(04):139-142.
[9]楊偉才.基於DS18B20的多點溫度測量系統研究[J].山東工業技術,2016(24):266.
[10]嚴敏.基於單片機的智能溫控系統的設計與實現[J].無錫職業技術學院學報,2016,15(03):61-64.
[11]吳嘉穎. 基於單片機的地鐵低壓設備觸點溫度監測系統的設計與實現[D].西南交通大學,2017.
[12]孫曉倩.基於51單片機的溫度監測報警系統設計研究[J].赤峰學院學報(自然科學版),2015,31(24):24-26.
[13]仲霞.基於DS18B20的多點溫度測量系統探討[J].山東工業技術,2015(22):156.
[14]呂曉磊.基於單片機智能控溫的模擬與設計[J].安徽電子信息職業技術學院學報,2015,14(03):34-37.
[15]賀爭漢.基於51單片機的溫度控制系統[J].黑龍江科技信息,2015(16):145.
[16]譚虹.智能型滑雪保溫鞋溫控系統的設計與實現[J].體育世界(學術版),2014(11):19-20.
[17]王雲飛.DS18B20溫度感測器的應用設計[J].電子世界,2014(12):355.
[18]劉金魁.基於DS18B20的數字測溫系統[J].焦作大學學報,2014,28(02):99-100.
[19]楊丹丹,楊風,馬慧卿.基於單片機的溫度採集系統設計[J].山西電子技術,2014(03):19-21.
[20]曹美霞.單片機與數字溫度感測器DS18B20的介面設計[J].電子製作,2014(11):9-10.
B. 基於51單片機的溫度計設計問題!溫度感測器的選擇
既然是體溫計,個頭不能太大吧
我建議用ds18b20個頭小啊
還有你還要顯示的啊,不能測出的體溫,天知地知,你不知我不知啊
一般用DS18B20畢竟人家是數字式的
交流
C. 基於STC90C51單片機溫度控制器課程設計的設計目的是什麼
其目的是學習單片機基本原理和結構,溫度感測器與單片機通信協議,數碼管顯示或液晶顯示和程序編寫(C或匯編)等相關知識
D. 高分求單片機溫度採集系統的課程設計
DS18B20數字溫度計使用
1.DS18B20基本知識
DS18B20數字溫度計是DALLAS公司生產的1-Wire,即單匯流排器件,具有線路簡單,體積小的特點。因此用它來組成一個測溫系統,具有線路簡單,在一根通信線,可以掛很多這樣的數字溫度計,十分方便。
1、DS18B20產品的特點
(1)、只要求一個埠即可實現通信。
(2)、在DS18B20中的每個器件上都有獨一無二的序列號。
(3)、實際應用中不需要外部任何元器件即可實現測溫。
(4)、測量溫度范圍在-55。C到+125。C之間。
(5)、數字溫度計的解析度用戶可以從9位到12位選擇。
(6)、內部有溫度上、下限告警設置。
2、DS18B20的引腳介紹
TO-92封裝的DS18B20的引腳排列見圖1,其引腳功能描述見表1。
(底視圖)圖1
表1 DS18B20詳細引腳功能描述 序號
名稱
引腳功能描述
1
GND
地信號
2
DQ
數據輸入/輸出引腳。開漏單匯流排介面引腳。當被用著在寄生電源下,也可以向器件提供電源。
3
VDD
可選擇的VDD引腳。當工作於寄生電源時,此引腳必須接地。
3. DS18B20的使用方法
由於DS18B20採用的是1-Wire匯流排協議方式,即在一根數據線實現數據的雙向傳輸,而對AT89S51單片機來說,硬體上並不支持單匯流排協議,因此,我們必須採用軟體的方法來模擬單匯流排的協議時序來完成對DS18B20晶元的訪問。
由於DS18B20是在一根I/O線上讀寫數據,因此,對讀寫的數據位有著嚴格的時序要求。DS18B20有嚴格的通信協議來保證各位數據傳輸的正確性和完整性。該協議定義了幾種信號的時序:初始化時序、讀時序、寫時序。所有時序都是將主機作為主設備,單匯流排器件作為從設備。而每一次命令和數據的傳輸都是從主機主動啟動寫時序開始,如果要求單匯流排器件回送數據,在進行寫命令後,主機需啟動讀時序完成數據接收。數據和命令的傳輸都是低位在先。
DS18B20的復位時序
DS18B20的讀時序
對於DS18B20的讀時序分為讀0時序和讀1時序兩個過程。
對於DS18B20的讀時隙是從主機把單匯流排拉低之後,在15秒之內就得釋放單匯流排,以讓DS18B20把數據傳輸到單匯流排上。DS18B20在完成一個讀時序過程,至少需要60us才能完成。
DS18B20的寫時序
對於DS18B20的寫時序仍然分為寫0時序和寫1時序兩個過程。
對於DS18B20寫0時序和寫1時序的要求不同,當要寫0時序時,單匯流排要被拉低至少60us,保證DS18B20能夠在15us到45us之間能夠正確地采樣IO匯流排上的「0」電平,當要寫1時序時,單匯流排被拉低之後,在15us之內就得釋放單匯流排。
4. 實驗任務
用一片DS18B20構成測溫系統,測量的溫度精度達到0.1度,測量的溫度的范圍在-20度到+100度之間,用8位數碼管顯示出來。
5. 電路原理圖
6. 系統板上硬體連線
(1). 把「單片機系統」區域中的P0.0-P0.7用8芯排線連接到「動態數碼顯示」區域中的ABCDEFGH端子上。
(2). 把「單片機系統」區域中的P2.0-P2.7用8芯排線連接到「動態數碼顯示」區域中的S1S2S3S4S5S6S7S8端子上。
(3). 把DS18B20晶元插入「四路單匯流排」區域中的任一個插座中,注意電源與地信號不要接反。
(4). 把「四路單匯流排」區域中的對應的DQ端子連接到「單片機系統」區域中的P3.7/RD端子上。
7. C語言源程序
#i nclude <AT89X52.H>
#i nclude <INTRINS.h>
unsigned char code displaybit[]={0xfe,0xfd,0xfb,0xf7,
0xef,0xdf,0xbf,0x7f};
unsigned char code displaycode[]={0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71,0x00,0x40};
unsigned char code dotcode[32]={0,3,6,9,12,16,19,22,
25,28,31,34,38,41,44,48,
50,53,56,59,63,66,69,72,
75,78,81,84,88,91,94,97};
unsigned char displaycount;
unsigned char displaybuf[8]={16,16,16,16,16,16,16,16};
unsigned char timecount;
unsigned char readdata[8];
sbit DQ=P3^7;
bit sflag;
bit resetpulse(void)
{
unsigned char i;
DQ=0;
for(i=255;i>0;i--);
DQ=1;
for(i=60;i>0;i--);
return(DQ);
for(i=200;i>0;i--);
}
void writecommandtods18b20(unsigned char command)
{
unsigned char i;
unsigned char j;
for(i=0;i<8;i++)
{
if((command & 0x01)==0)
{
DQ=0;
for(j=35;j>0;j--);
DQ=1;
}
else
{
DQ=0;
for(j=2;j>0;j--);
DQ=1;
for(j=33;j>0;j--);
}
command=_cror_(command,1);
}
}
unsigned char readdatafromds18b20(void)
{
unsigned char i;
unsigned char j;
unsigned char temp;
temp=0;
for(i=0;i<8;i++)
{
temp=_cror_(temp,1);
DQ=0;
_nop_();
_nop_();
DQ=1;
for(j=10;j>0;j--);
if(DQ==1)
{
temp=temp | 0x80;
}
else
{
temp=temp | 0x00;
}
for(j=200;j>0;j--);
}
return(temp);
}
void main(void)
{
TMOD=0x01;
TH0=(65536-4000)/256;
TL0=(65536-4000)%256;
ET0=1;
EA=1;
while(resetpulse());
writecommandtods18b20(0xcc);
writecommandtods18b20(0x44);
TR0=1;
while(1)
{
;
}
}
void t0(void) interrupt 1 using 0
{
unsigned char x;
unsigned int result;
TH0=(65536-4000)/256;
TL0=(65536-4000)%256;
if(displaycount==2)
{
P0=displaycode[displaybuf[displaycount]] | 0x80;
}
else
{
P0=displaycode[displaybuf[displaycount]];
}
P2=displaybit[displaycount];
displaycount++;
if(displaycount==8)
{
displaycount=0;
}
timecount++;
if(timecount==150)
{
timecount=0;
while(resetpulse());
writecommandtods18b20(0xcc);
writecommandtods18b20(0xbe);
readdata[0]=readdatafromds18b20();
readdata[1]=readdatafromds18b20();
for(x=0;x<8;x++)
{
displaybuf[x]=16;
}
sflag=0;
if((readdata[1] & 0xf8)!=0x00)
{
sflag=1;
readdata[1]=~readdata[1];
readdata[0]=~readdata[0];
result=readdata[0]+1;
readdata[0]=result;
if(result>255)
{
readdata[1]++;
}
}
readdata[1]=readdata[1]<<4;
readdata[1]=readdata[1] & 0x70;
x=readdata[0];
x=x>>4;
x=x & 0x0f;
readdata[1]=readdata[1] | x;
x=2;
result=readdata[1];
while(result/10)
{
displaybuf[x]=result%10;
result=result/10;
x++;
}
displaybuf[x]=result;
if(sflag==1)
{
displaybuf[x+1]=17;
}
x=readdata[0] & 0x0f;
x=x<<1;
displaybuf[0]=(dotcode[x])%10;
displaybuf[1]=(dotcode[x])/10;
while(resetpulse());
writecommandtods18b20(0xcc);
writecommandtods18b20(0x44);
}
}
關鍵詞:單匯流排; 數字溫度感測器; 多點溫度測控
1 前言
隨著科學技術的發展,特別是現代儀器的發展,微型化、集成化、數字化正成為感測器發展的一個重要方向[1]。美國Dallas半導體公司推出的數字化溫度感測器DS1820採用單匯流排協議,即與微機介面僅需佔用一個I/O埠,無需任何外部元件,直接將溫度轉化成數字信號,以9位數字碼方式串列輸出,從而大大簡化了感測器與微處理器的介面。
2 工作原理
目前大多數感測器系統都採用放大--傳輸--數模轉換這種處理模式。這種模式一般要佔用數條數
據/控制線,限制了單片機功能的擴展。而一線匯流排技術則很好地解決了這個問題。
一線匯流排技術就是在一條匯流排上僅有一個主系統和若干個從系統組成的計算機應用系統。由於匯流排上的所有器件都通過一條信號線傳輸信息,匯流排上的每個器件在不同的時間段驅動匯流排,這相當於把數據匯流排、地址匯流排和控制匯流排合在了一起。所以整個系統要按單匯流排協議規定的時序進行工作。為了使其它設備也能使用這條匯流排,一線匯流排協議採用了一個三態門,使得每一個設備在不傳送數據時空出該數據線給
其它設備。一線匯流排在外部需要一個上拉電阻器,所以在匯流排空閑時是高電平。
掛在單匯流排上的器件稱為單匯流排器件,為了區分匯流排上的不同器件,生產單匯流排器件時,廠家都刻錄了一個64位的二進制ROM代碼作為晶元的唯一序列號。這樣通過定址就可以把每個器件識別出來。64位ROM的結構如下:開始8位是產品類型的編號(DS1820為10H),接著是每個器件的唯一的序號,共
有48位,最後8位是前56位的CRC校驗碼,這也是多個DS1820可以採用一線進行通信的原因。 3 DS1820介紹
DS1820是美國Dallas半導體公司推出的第一片支持"一線匯流排"介面的溫度感測器。它具有微型化、低功耗、高性能、抗干擾能力強、易配微處理器等優點,可直接將溫度轉化成串列數字信號供微機處理[2]。
DS1820的工作原理是:DS1820採用3腳PR-35封裝或8腳SOIC封裝,其中 GND為地;I/O為數據輸入/輸出端(即單線匯流排),該腳為漏極開路輸出,常態下呈高電平;VDD是外部+5V電源端,不用時應接地;NC為空腳。圖1 所示為DS1820的內部框圖,它主要包括寄生電源、溫度感測器、64位激光ROM單線介面、存放中間數據的高速暫存器(內含便箋式RAM),用於存儲用戶設定的溫度上下限值的TH和TL解發器存儲與控制邏輯、8位循環冗餘校驗碼(CRC)發生器等七部分。
DS1820 特點如下:硬體介面簡單,性能穩定,單線介面,僅需一根口線與MCU連接無需外圍元件;由匯流排提供電源;測溫范圍為-55~75℃;精度為0.5℃;9位溫度讀數;A/D變換時間為200ms;用戶自設定溫度報警上下限,其值是非易失性的;報警搜索命令可識別那片DS1820超溫度限。
DS1820的溫度測量原理如下[3]:DS1820測量溫度時使用特有的溫度測量技術,其測量電路框圖如圖2所示。內部計數器對一個受溫度影響的振盪器的脈沖計數,低溫時振盪器的脈沖可以通過門電路,而當到達某一設置高溫時,振盪器的脈沖無法通過門電路。計數器設置為-55℃時的值,如果計數器到達0之前,門電路未關閉,則溫度寄存器的值將增加,這表示當前溫度高於-55℃。同時,計數器復位在當前溫度值上,電路對振盪器的溫度系數進行補償,計數器重新開始計數直到回零。如果門電路仍然未關閉,則重復以上過程。溫度表示值為9bit,高位為符號位。
4 溫度檢測系統設計
由於每片DS1820含有唯一的硅串列數,所以在一條匯流排上可掛接多個DS1820晶元。從DS1820讀出的信息或寫入DS1820的信息,僅需要一根口線(單線介面)。讀寫及溫度變換功率來源於數據匯流排,匯流排本身也可以向所掛接的DS1820供電,而無需額外電源。DS1820提供9位溫度讀數,構成多點溫度檢測系統而無需任何外圍硬體。對DS1820的使用,多採用單片機實現數據採集。處理時,將DS1820信號線與單片機一位口線相連,單片機可掛接多片DS1820,從而實現多點溫度檢測系統。由於DS1820隻有三個引腳,其中兩根是電源線VDD和GND,另外兩根用作匯流排DQ(Data In/Out),由於其輸出和輸入均是數字信號且與TTL電平兼容,因此其可以與微處理器直接進行介面,從而省去了一般感測器所必需的中間轉換環節。
本設計中以DS1820為感測器、AT89C52單片機為控制核心組成的多點溫度測試系統如圖3所示[4]。用6隻DS1820同時測控6路溫度(視實際需要還可擴展通道數)。89C52單片機P1.1口接單線匯流排。DS1820採用寄生電源供電方式。為保證在有效的DS1820時鍾周期內能提供足夠的電流,圖3中採用一個MOSFET管和89C52的H.0口來完成對DS1820的匯流排上拉。鍵盤掃描和動態掃描的顯示共用一片可編程介面晶元8279,顯示採用8位共陰極LED數碼管,它可用來顯示通道數、溫度測量值以及TH、TL的值。
程序處理是整個系統的關鍵,即簡潔的硬體結構是靠復雜的軟體來支持的。多個器件掛在一條匯流排上為了識別不同的器件,在程序設計過程中一般有四個步驟:初始化命令;傳送ROM命令;傳送RAM命令;數據交換命令。
需要注意的是,無論是單點還是多點溫度檢測,在系統安裝及工作之前,應將主機逐個與DS1820掛接,讀出其序列號。其工作過程為:主機發出一個脈沖,待 "0"電平大於480μs後,復位DA1820,在DS1820所發響應脈沖由主機接收後,主機再發讀ROM命令代碼33H,然後發一個脈沖(15μs),並接著讀取DS1820序列號的一位。用同樣方法讀取序列號的56位。另外,由於DS1820單線通信功能是分時完成的,遵循嚴格的時隙概念,因此,系統對DS1820和各種操作必須按協議進行,即初始化DS1820(發復位脈沖)→發ROM功能命令→發存儲器操作命令→處理數據。系統對 DS1820操作的總體流程圖如圖4所示。
在正常測溫情況下,DS1820的測溫分辨力為0.5℃。採用下述方法可獲得高解析度的溫度測量結果:首先用DS1820提供的讀暫存器指令(BEH)讀出以0.5℃為解析度的溫度測量結果,然後切去測量結果中的最低有效位(LSB),得到所測實際溫度的整數部分Tz,然後再用BEH指令取計數器1的計數剩餘值Cs和每度計數值CD。考慮到DS1820測量溫度的整數部分以0.25和0.75℃為進位界限的關系.
結束語
對應於傳統概念,這一粒三極體一樣的感測器相當於傳統的溫度感測器+ 數字化+ CPU+ 匯流排協議及介面。一線器件採用單條連線,解決了控制、通信和供電等問題,降低了系統成本,並簡化了設計,為未來感測器的發展和應用開辟了新的領域。
http://www.mcublog.com/blog/blog2007/shuizhongzehui/archives/2007/22353.html
http://blog.21ic.com/user1/422/archives/2006/12900.html
有流程圖,電路圖和資料,不過網路上傳不了
E. 基於51單片機及DS18B20溫度感測器的數字溫度計設計
你好!
1、關於這個數字溫度計;
是有實物?發一下原理圖
2、還是用模擬模擬出效果?
3、顯示器件數碼管還是液晶
4、是否帶有溫度報警功能