當前位置:首頁 » 課程大全 » 機械設計課程設計圓錐圓柱減速器

機械設計課程設計圓錐圓柱減速器

發布時間: 2021-03-09 04:19:14

1. 大三機械設計課程設計圓錐圓柱齒輪減速器

你應該自己設計呀。
減速器是很經典的課程設計呀。
不要圖個簡便。從網上搞
在大3階段,好好進行設計,將來會有好處的。
要不,
大學上完了,對模數還一知半解的,就不好了。
現在找工作,考齒輪的很多的

2. 求高人幫我做個機械設計課程設計(圓錐圓柱齒輪減速器)

得花錢找人做才可以 這里基本是沒人幫你做的

3. 機械設計課程設計:二級圓錐-圓柱齒 輪式減速器設計工作拉力F=2200N,捲筒 直徑D=240mm

二級圓錐-圓柱齒 輪式減速器這個做過一份呢,裡面的數據不會完全一樣的呢,老師肯定改過的呢

4. 機械設計 圓錐圓柱減速器設計

呵呵 今年六月分我也做了機械設計課程設計,當時下了幾個模板,做完就刪了,你到機械論壇厘米啊去找吧 我就是在那裡面下載的
http://bbs.mechnet.com.cn/

5. 機械設計課程設計題目如下:設計用於帶式運輸機的圓錐-圓柱齒輪減速器

按照你提供的資料
幫你完成。。

6. 機械設計課程設計說明書(二級圓錐 圓柱齒輪減速器)+CAD圖紙

機械(機器)最基本的組成部分有動力裝置、傳動裝置、工作裝置

7. 請問大三機械設計課程設計圓錐圓柱齒輪減速器總結如何寫

雙級主減速器
當主減速器傳動比較大時,為保證汽車具有足夠的離地間隙,這時則需採用雙級主減速器。
先了解單級減速器吧。
單級減速器就是一個主動椎齒輪(俗稱角齒),和一個從動傘齒輪(俗稱盆角齒),主動椎齒輪連接傳動軸,順時針旋轉,從動傘齒輪貼在其右側,嚙合點向下轉動,與車輪前進方向一致。由於主動錐齒輪直徑小,從動傘齒輪直徑大,達到減速的功能。
雙級減速器多了一個中間過渡齒輪,主動椎齒輪左側與中間齒輪的傘齒部分嚙合,傘齒輪同軸有一個小直徑的直齒輪,直齒輪與從動齒輪嚙合。這樣中間齒輪向後轉,從動齒輪向前轉動。中間有兩級減速過程。 雙級減速由於使車橋體積增大,過去主要用在發動機功率偏低的車輛匹配上,現在主要用於低速高扭矩的工程機械方面。
在雙級式主減速器中,若第二級減速在車輪附近進行,實際上構成兩個車輪處的獨立部件,則稱為輪邊減速器。這樣作的好處是可以減小半軸所傳遞的轉矩,有利於減小半軸的尺寸和質量。輪邊減速器可以是行星齒輪式的,也可以由一對圓柱齒輪副構成。當採用圓柱齒輪副進行輪邊減速時可以通過調節兩齒輪的相互位置,改變車輪軸線與半軸之間的上下位置關系。這種車橋稱為門式車橋,常用於對車橋高低位置有特殊要求的汽車。
按主減速器傳動比檔數分,可分為單速式和雙速式兩種。目前,國產汽車基本都採用了傳動比固定的單速式主減速器。在雙速式主減速器上,設有供選擇的兩個傳動比,這種主減速器實際上又起到了副變速器的作用。

8. 急求機械設計課程設計說明書(二級圓錐 圓柱齒輪減速器)

計算過程及計算說明
一、傳動方案擬定
第三組:設計單級圓柱齒輪減速器和一級帶傳動
() 工作條件:使用年限8年,工作為二班工作制,載荷平穩,環境清潔。
(2) 原始數據:滾筒圓周力F=1000N;帶速V=2.0m/s;
滾筒直徑D=500mm;滾筒長度L=500mm。

二、電動機選擇
1、電動機類型的選擇: Y系列三相非同步電動機
2、電動機功率選擇:
(1)傳動裝置的總功率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.982×0.97×0.99×0.96
=0.85
(2)電機所需的工作功率:
P工作=FV/1000η總
=1000×2/1000×0.8412
=2.4KW

3、確定電動機轉速:
計算滾筒工作轉速:
n筒=60×1000V/πD
=60×1000×2.0/π×50
=76.43r/min
按手冊P7表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』a=3~6。取V帶傳動比I』1=2~4,則總傳動比理時范圍為I』a=6~24。故電動機轉速的可選范圍為n』d=I』a×
n筒=(6~24)×76.43=459~1834r/min
符合這一范圍的同步轉速有750、1000、和1500r/min。

根據容量和轉速,由有關手冊查出有三種適用的電動機型號:因此有三種傳支比方案:如指導書P15頁第一表。綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,可見第2方案比較適合,則選n=1000r/min 。

4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為Y132S-6。
其主要性能:額定功率:3KW,滿載轉速960r/min,額定轉矩2.0。質量63kg。

三、計算總傳動比及分配各級的偉動比
1、總傳動比:i總=n電動/n筒=960/76.4=12.57
2、分配各級偉動比
(1) 據指導書P7表1,取齒輪i齒輪=6(單級減速器i=3~6合理)
(2) ∵i總=i齒輪×I帶
∴i帶=i總/i齒輪=12.57/6=2.095

四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=n電機=960r/min
nII=nI/i帶=960/2.095=458.2(r/min)
nIII=nII/i齒輪=458.2/6=76.4(r/min)
2、 計算各軸的功率(KW)
PI=P工作=2.4KW
PII=PI×η帶=2.4×0.96=2.304KW
PIII=PII×η軸承×η齒輪=2.304×0.98×0.96
=2.168KW

3、 計算各軸扭矩(N•mm)
TI=9.55×106PI/nI=9.55×106×2.4/960
=23875N•mm
TII=9.55×106PII/nII
=9.55×106×2.304/458.2
=48020.9N•mm
TIII=9.55×106PIII/nIII=9.55×106×2.168/76.4
=271000N•mm

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本P83表5-9得:kA=1.2
PC=KAP=1.2×3=3.9KW
由課本P82圖5-10得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由課本圖5-10得,推薦的小帶輪基準直徑為
75~100mm
則取dd1=100mm>dmin=75
dd2=n1/n2•dd1=960/458.2×100=209.5mm
由課本P74表5-4,取dd2=200mm

實際從動輪轉速n2』=n1dd1/dd2=960×100/200
=480r/min
轉速誤差為:n2-n2』/n2=458.2-480/458.2
=-0.048<0.05(允許)
帶速V:V=πdd1n1/60×1000
=π×100×960/60×1000
=5.03m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心矩
根據課本P84式(5-14)得
0. 7(dd1+dd2)≤a0≤2(dd1+dd2)
0. 7(100+200)≤a0≤2×(100+200)
所以有:210mm≤a0≤600mm
由課本P84式(5-15)得:
L0=2a0+1.57(dd1+dd2)+(dd2-dd1)/4a0
=2×500+1.57(100+200)+(200-100)2/4×500
=1476mm
根據課本P71表(5-2)取Ld=1400mm
根據課本P84式(5-16)得:
a≈a0+Ld-L0/2=500+1400-1476/2
=500-38
=462mm
(4)驗算小帶輪包角
α1=1800-dd2-dd1/a×57.30
=1800-200-100/462×57.30
=1800-12.40
=167.60>1200(適用)
(5)確定帶的根數
根據課本P78表(5-5)P1=0.95KW
根據課本P79表(5-6)△P1=0.11KW
根據課本P81表(5-7)Kα=0.96
根據課本P81表(5-8)KL=0.96
由課本P83式(5-12)得

Z=PC/P』=PC/(P1+△P1)KαKL
=3.9/(0.95+0.11) ×0.96×0.96
=3.99
(6)計算軸上壓力
由課本P70表5-1查得q=0.1kg/m,由式(5-18)單根V帶的初拉力:
F0=500PC/ZV(2.5/Kα-1)+qV2
=[500×3.9/4×5.03×(2.5/0.96-1)+0.1×5.032]N
=158.01N
則作用在軸承的壓力FQ,由課本P87式(5-19)
FQ=2ZF0sinα1/2=2×4×158.01sin167.6/2
=1256.7N

2、齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不在,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45鋼,調質,齒面硬度220HBS;根據課本P139表6-12選7級精度。齒面精糙度Ra≤1.6~3.2μm
(2)按齒面接觸疲勞強度設計
由d1≥76.43(kT1(u+1)/φ[σH]2)1/3
由式(6-15)
確定有關參數如下:傳動比i齒=6
取小齒輪齒數Z1=20。則大齒輪齒數:
Z2=iZ1=6×20=120
實際傳動比I0=120/2=60
傳動比誤差:i-i0/I=6-6/6=0%<2.5% 可用
齒數比:u=i0=6
由課本P138表6-10取φd=0.9
(3)轉矩T1
T1=9.55×106×P/n1=9.55×106×2.4/458.2
=50021.8N•mm
(4)載荷系數k
由課本P128表6-7取k=1
(5)許用接觸應力[σH]
[σH]= σHlimZNT/SH由課本P134圖6-33查得:
σHlimZ1=570Mpa σHlimZ2=350Mpa
由課本P133式6-52計算應力循環次數NL
NL1=60n1rth=60×458.2×1×(16×365×8)
=1.28×109
NL2=NL1/i=1.28×109/6=2.14×108
由課本P135圖6-34查得接觸疲勞的壽命系數:
ZNT1=0.92 ZNT2=0.98
通用齒輪和一般工業齒輪,按一般可靠度要求選取安全系數SH=1.0
[σH]1=σHlim1ZNT1/SH=570×0.92/1.0Mpa
=524.4Mpa
[σH]2=σHlim2ZNT2/SH=350×0.98/1.0Mpa
=343Mpa
故得:
d1≥76.43(kT1(u+1)/φ[σH]2)1/3
=76.43[1×50021.8×(6+1)/0.9×6×3432]1/3mm
=48.97mm
模數:m=d1/Z1=48.97/20=2.45mm
根據課本P107表6-1取標准模數:m=2.5mm
(6)校核齒根彎曲疲勞強度
根據課本P132(6-48)式
σF=(2kT1/bm2Z1)YFaYSa≤[σH]
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×120mm=300mm
齒寬:b=φdd1=0.9×50mm=45mm
取b=45mm b1=50mm
(7)齒形系數YFa和應力修正系數YSa
根據齒數Z1=20,Z2=120由表6-9相得
YFa1=2.80 YSa1=1.55
YFa2=2.14 YSa2=1.83
(8)許用彎曲應力[σF]
根據課本P136(6-53)式:
[σF]= σFlim YSTYNT/SF
由課本圖6-35C查得:
σFlim1=290Mpa σFlim2 =210Mpa
由圖6-36查得:YNT1=0.88 YNT2=0.9
試驗齒輪的應力修正系數YST=2
按一般可靠度選取安全系數SF=1.25
計算兩輪的許用彎曲應力
[σF]1=σFlim1 YSTYNT1/SF=290×2×0.88/1.25Mpa
=408.32Mpa
[σF]2=σFlim2 YSTYNT2/SF =210×2×0.9/1.25Mpa
=302.4Mpa
將求得的各參數代入式(6-49)
σF1=(2kT1/bm2Z1)YFa1YSa1
=(2×1×50021.8/45×2.52×20) ×2.80×1.55Mpa
=77.2Mpa< [σF]1
σF2=(2kT1/bm2Z2)YFa1YSa1
=(2×1×50021.8/45×2.52×120) ×2.14×1.83Mpa
=11.6Mpa< [σF]2
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=m/2(Z1+Z2)=2.5/2(20+120)=175mm
(10)計算齒輪的圓周速度V
V=πd1n1/60×1000=3.14×50×458.2/60×1000
=1.2m/s

六、軸的設計計算
輸入軸的設計計算
1、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據課本P235(10-2)式,並查表10-2,取c=115
d≥115 (2.304/458.2)1/3mm=19.7mm
考慮有鍵槽,將直徑增大5%,則
d=19.7×(1+5%)mm=20.69
∴選d=22mm

2、軸的結構設計
(1)軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
(2)確定軸各段直徑和長度
工段:d1=22mm 長度取L1=50mm
∵h=2c c=1.5mm
II段:d2=d1+2h=22+2×2×1.5=28mm
∴d2=28mm
初選用7206c型角接觸球軸承,其內徑為30mm,
寬度為16mm.
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+16+55)=93mm
III段直徑d3=35mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=45mm
由手冊得:c=1.5 h=2c=2×1.5=3mm
d4=d3+2h=35+2×3=41mm
長度與右面的套筒相同,即L4=20mm
但此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:(30+3×2)=36mm
因此將Ⅳ段設計成階梯形,左段直徑為36mm
Ⅴ段直徑d5=30mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=100mm
(3)按彎矩復合強度計算
①求分度圓直徑:已知d1=50mm
②求轉矩:已知T2=50021.8N•mm
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=50021.8/50=1000.436N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft•tanα=1000.436×tan200=364.1N
⑤因為該軸兩軸承對稱,所以:LA=LB=50mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=182.05N
FAZ=FBZ=Ft/2=500.2N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=182.05×50=9.1N•m
(3)繪制水平面彎矩圖(如圖c)
截面C在水平面上彎矩為:
MC2=FAZL/2=500.2×50=25N•m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(9.12+252)1/2=26.6N•m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=48N•m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=1,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[26.62+(1×48)2]1/2=54.88N•m
(7)校核危險截面C的強度
由式(6-3)
σe=Mec/0.1d33=99.6/0.1×413
=14.5MPa< [σ-1]b=60MPa
∴該軸強度足夠。

輸出軸的設計計算
1、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=115
d≥c(P3/n3)1/3=115(2.168/76.4)1/3=35.08mm
取d=35mm

2、軸的結構設計
(1)軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
(2)確定軸的各段直徑和長度
初選7207c型角接球軸承,其內徑為35mm,寬度為17mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長41mm,安裝齒輪段長度為輪轂寬度為2mm。
(3)按彎扭復合強度計算
①求分度圓直徑:已知d2=300mm
②求轉矩:已知T3=271N•m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×271×103/300=1806.7N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft•tanα=1806.7×0.36379=657.2N
⑤∵兩軸承對稱
∴LA=LB=49mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=657.2/2=328.6N
FAZ=FBZ=Ft/2=1806.7/2=903.35N
(2)由兩邊對稱,書籍截C的彎矩也對稱
截面C在垂直面彎矩為
MC1=FAYL/2=328.6×49=16.1N•m
(3)截面C在水平面彎矩為
MC2=FAZL/2=903.35×49=44.26N•m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(16.12+44.262)1/2
=47.1N•m
(5)計算當量彎矩:根據課本P235得α=1
Mec=[MC2+(αT)2]1/2=[47.12+(1×271)2]1/2
=275.06N•m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d)=275.06/(0.1×453)
=1.36Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

七、滾動軸承的選擇及校核計算
根據根據條件,軸承預計壽命
16×365×8=48720小時
1、計算輸入軸承
(1)已知nⅡ=458.2r/min
兩軸承徑向反力:FR1=FR2=500.2N
初先兩軸承為角接觸球軸承7206AC型
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=315.1N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=315.1N FA2=FS2=315.1N
(3)求系數x、y
FA1/FR1=315.1N/500.2N=0.63
FA2/FR2=315.1N/500.2N=0.63
根據課本P263表(11-8)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P263表(11-9)取f P=1.5
根據課本P262(11-6)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×500.2+0)=750.3N
P2=fp(x2FR1+y2FA2)=1.5×(1×500.2+0)=750.3N
(5)軸承壽命計算
∵P1=P2 故取P=750.3N
∵角接觸球軸承ε=3
根據手冊得7206AC型的Cr=23000N
由課本P264(11-10c)式得
LH=16670/n(ftCr/P)ε
=16670/458.2×(1×23000/750.3)3
=1047500h>48720h
∴預期壽命足夠

2、計算輸出軸承
(1)已知nⅢ=76.4r/min
Fa=0 FR=FAZ=903.35N
試選7207AC型角接觸球軸承
根據課本P265表(11-12)得FS=0.063FR,則
FS1=FS2=0.63FR=0.63×903.35=569.1N
(2)計算軸向載荷FA1、FA2
∵FS1+Fa=FS2 Fa=0
∴任意用一端為壓緊端,1為壓緊端,2為放鬆端
兩軸承軸向載荷:FA1=FA2=FS1=569.1N
(3)求系數x、y
FA1/FR1=569.1/903.35=0.63
FA2/FR2=569.1/930.35=0.63
根據課本P263表(11-8)得:e=0.68
∵FA1/FR1<e ∴x1=1
y1=0
∵FA2/FR2<e ∴x2=1
y2=0
(4)計算當量動載荷P1、P2
根據表(11-9)取fP=1.5
根據式(11-6)得
P1=fP(x1FR1+y1FA1)=1.5×(1×903.35)=1355N
P2=fP(x2FR2+y2FA2)=1.5×(1×903.35)=1355N
(5)計算軸承壽命LH
∵P1=P2 故P=1355 ε=3
根據手冊P71 7207AC型軸承Cr=30500N
根據課本P264 表(11-10)得:ft=1
根據課本P264 (11-10c)式得
Lh=16670/n(ftCr/P) ε
=16670/76.4×(1×30500/1355)3
=2488378.6h>48720h
∴此軸承合格
八、鍵聯接的選擇及校核計算
軸徑d1=22mm,L1=50mm
查手冊得,選用C型平鍵,得:
鍵A 8×7 GB1096-79 l=L1-b=50-8=42mm
T2=48N•m h=7mm
根據課本P243(10-5)式得
σp=4T2/dhl=4×48000/22×7×42
=29.68Mpa<[σR](110Mpa)

2、輸入軸與齒輪聯接採用平鍵聯接
軸徑d3=35mm L3=48mm T=271N•m
查手冊P51 選A型平鍵
鍵10×8 GB1096-79
l=L3-b=48-10=38mm h=8mm
σp=4T/dhl=4×271000/35×8×38
=101.87Mpa<[σp](110Mpa)

3、輸出軸與齒輪2聯接用平鍵聯接
軸徑d2=51mm L2=50mm T=61.5Nm
查手冊P51 選用A型平鍵
鍵16×10 GB1096-79
l=L2-b=50-16=34mm h=10mm
據課本P243式(10-5)得
σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]

9. 機械設計課程設計圓錐圓柱齒輪減速器cad圖紙

設計圓錐圓柱齒輪減速器cad圖紙
比較多,飛翔

10. 跪求一份詳細的大三機械設計課程設計說明書(圓錐 圓柱齒輪減速器的設計)

僅供參考啊一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N

熱點內容
武漢大學學生會輔導員寄語 發布:2021-03-16 21:44:16 瀏覽:612
七年級學生作文輔導學案 發布:2021-03-16 21:42:09 瀏覽:1
不屑弟高考成績 發布:2021-03-16 21:40:59 瀏覽:754
大學畢業證會有成績單 發布:2021-03-16 21:40:07 瀏覽:756
2017信陽學院輔導員招聘名單 發布:2021-03-16 21:40:02 瀏覽:800
查詢重慶2018中考成績查詢 發布:2021-03-16 21:39:58 瀏覽:21
結業考試成績怎麼查詢 發布:2021-03-16 21:28:40 瀏覽:679
14中醫醫師資格筆試考試成績查分 發布:2021-03-16 21:28:39 瀏覽:655
名著賞析課程標准 發布:2021-03-16 21:27:57 瀏覽:881
北京大學商業領袖高端培訓課程 發布:2021-03-16 21:27:41 瀏覽:919