當前位置:首頁 » 學校課程 » 課程教材研究所小學數學人教版

課程教材研究所小學數學人教版

發布時間: 2021-03-04 02:21:45

① 課程教材研究所小學數學課程教材研究開發中心的地址在哪裡

我遇到 人教版小學五年級數學上冊的「數學黑洞」。我在教學中遇到需要9步才得到答案6174。回
(選用數字答3、5、8、0)
河南濟源克井衛傳梅

② 小學三年級數學人教版的書名是啥啊

義務教育課程標准實驗教科書 數學

課程教材研究所 編著
小學數學課程教材研究開發中心

③ 人民教育出版社課程教材研究所主辦的小學數學是國家級的期刊嗎

華羅庚 (2004-02-06) 華羅庚(1910-1985)中國現代數學家,是新中國數學研究事業的創始人,也是中國在世界上最有影響的數學家之一。 1958年華羅庚開始研究把優選法和統籌學應用於工農業生產。他全心全意投入到數學普及工作中去,義無反顧地幹了近20年,足跡遍布大半個中國從大興安嶺到珠江兩岸,從東海之濱到天山南北到處都留下了他的足跡。曾到過二十多個工礦企業深入生產第一線傳授科學方法,解決實際問題。優選法和統籌學的推廣與傳播十幾年來從一個車間、一個村莊迅速傳遍了全中國。1964年寫出《統籌方法平話》和《統籌方法平話及其補充》。1967年著有《優選法》和《優選法平話》。 《統籌方法平話》和《優選法平話》用通俗易懂的語言、形象生動的方法使得婦孺都能明白、掌握應用,取得了增加生產、提高質量、降低消耗的效果。華羅庚被譽為「人民的數學家」。這期間,他還與王元教授合作開展了近代數論方法在近似分析上的應用的研究,所取得的結果被稱為「華-王方法」。並用深入淺出的語言寫出了《優選法平台及其補充》和《統籌法平話及補充》兩本科普讀物,深受廣大中國工人的歡迎。 他精闢地總結了這些年來從事普及數學方法工作的經驗,他提出並解決了普及數學方法的目的、內容及方法。也就是他所說的」三條原則」,即(1)為誰?(2)什麼技術?(3)如何推廣? 華羅庚教授在數學領域的研究工作既廣泛又具有開創性,發表論文150多篇,著作10本。1985年上海教育出版社出版了《華羅庚科普著作選集》,並於北京科學會堂隆重舉行了贈書儀式。 華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。這一期間,他千方百計地探索著數學為經濟建設服務的途徑,在"大哉數學之為用"一文中,他從各個方面,精闢地闡述了數學的用途,他又以非常通俗的語言,在總標題為"數學的用場"的一系列小品文中,介紹了一些有用的數學方法,登在"人民日報上",他精闢地總結了從事普及數學方法工作的經驗,他提出並解決了普及數學方法的目的,內容及方法,華羅庚同志也是我國最早把數學理論研究和生產實踐緊密結合作出巨大貢獻的科學家。 華羅庚被譽為人民的數學家,也是著名的科普作家。 陳景潤 (2004-02-06) 福建福州人,1953年畢業於廈門大學數學系,中國科學院數學研究所研究員。主要從事解析數論方面的研究,並在哥德巴赫猜想研究方面取得國際領先的成果。50年代對高斯圓內格點、球內格點、塔里問題與華林問題作了重要改進。60年代以來對篩法及其有關重要問題作了深入研究,1966年5月證明了命題「1+2」,將200多年來人們未能解決的哥德巴赫猜想的證明大大推進了一步。這一結果被國際上譽為「陳氏定理」;其後又對此作了改進,將最小素數從原有的80推進到16,深受稱贊。 陳景潤是世界著名解析數論學家之一,他在50年代即對高斯圓內格點問題、球內格點問題、塔里問題與華林問題的以往結果,作出了重要改進。60年代後,他又對篩法及其有關重要問題,進行廣泛深入的研究。 1966年屈居於六平方米小屋的陳景潤,借一盞昏暗的煤油燈,伏在床板上,用一支筆,耗去了幾麻袋的草稿紙,居然攻克了世界著名數學難題「哥德巴赫猜想」中的(1+2),創造了距摘取這顆數論皇冠上的明珠(1+ 1)只是一步之遙的輝煌。他證明了「每個大偶數都是一個素數及一個不超過兩個素數的乘積之和」,使他在哥德巴赫猜想的研究上居世界領先地位。這一結果國際上譽為「陳氏定理」,受到廣泛徵引。這項工作還使他與王元、潘承洞在1978年共同獲得中國自然科學獎一等獎。他研究哥德巴赫猜想和其他數論問題的成就,至今,仍然在世界上遙遙領先。世界級的數學大師、美國學者阿 ·威爾(A Weil)曾這樣稱贊他:「陳景潤的每一項工作,都好像是在喜馬拉雅山山巔上行走。」 陳景潤於1978年和1982年兩次收到國際數學家大會請他作45分鍾報告的邀請。這是中國人的自豪和驕傲。他所取得的成績,他所贏得的殊榮,為千千萬萬的知識分子樹起了一面不凋的旗幟,輝映三山五嶽,召喚著億萬的青少年奮發向前。 陳景潤共發表學術論文70餘篇。 高斯 (2004-02-05) 高斯(1777-1855),高斯是德國數學家 ,也是科學家,他和牛頓、阿基米德,被譽為有史以來的三大數學家。高斯是近代數學奠基者之一,在歷史上影響之大, 可以和阿基米德、牛頓、歐拉並列,有「數學王子」之稱。 他幼年時就表現出超人的數學天才。1795年進入格丁根大學學習。第二年他就發現正十七邊形的尺規作圖法。並給出可用尺規作出的正多邊形的條件,解決了歐幾里得以來懸而未決的問題。 高斯的數學研究幾乎遍及所有領域,在數論、代數學、非歐幾何、復變函數和微分幾何等方面都做出了開創性的貢獻。他還把數學應用於天文學、大地測量學和磁學的研究,發明了最小二乘法原理。高理的數論研究 總結 在《算術研究》(1801)中,這本書奠定了近代數論的基礎,它不僅是數論方面的劃時代之作,也是數學史上不可多得的經典著作之一。高斯對代數學的重要貢獻是證明了代數基本定理,他的存在性證明開創了數學研究的新途徑。高斯在1816年左右就得到非歐幾何的原理。他還深入研究復變函數,建立了一些基本概念發現了著名的柯西積分定理。他還發現橢圓函數的雙周期性,但這些工作在他生前都沒發表出來。1828年高斯出版了《關於曲面的一般研究》,全面系統地闡述了空間曲面的微分幾何學,並提出內蘊曲面理論。高斯的曲面理論後來由黎曼發展。 高斯一生共發表155篇論文,他對待學問十分嚴謹,只是把他自己認為是十分成熟的作品發表出來。其著作還有《地磁概念》和《論與距離平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十歲時,小學老師出了一道算術難題:「計算1+2+3…+100=?」。 這可難為初學算術的學生,但是高斯卻在幾秒後將答案解了出來,他利用算術級數(等差級數)的對稱性,然後就像求得一般算術級數和的過程一樣,把數目一對對的湊在一起:1+100,2+ 99,3+98,……49+52,50+51 而這樣的組合有50組,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有機會戲劇性地施展他的優勢的計算技巧。那年的元旦,有一個後來被證認為小行星並被命名為穀神星的天體被發現當時它好像在向太陽靠近,天文學家雖然有40天的時間可以觀察它,但還不能計算出它的軌道。高斯只作了3次觀測就提出了一種計算軌道參數的方法,而且達到的精確度使得天文學家在1801年末和1802年初能夠毫無困難地再確定穀神星的位置。高斯在這一計算方法中用到了他大約在1794年創造的最小二乘法(一種可從特定計算得到最小的方差和中求出最佳估值的方法在天文學中這一成就立即得到公認。他在《天體運動理論》中敘述的方法今天仍在使用,只要稍作修改就能適應現代計算機的要求。高斯在小行星」智神星」方面也獲得類似的成功。 由於高斯在數學、天文學、大地測量學和物理學中的傑出研究成果,他被選為許多科學院和學術團體的成員。「數學之王」的稱號是對他一生恰如其分的贊頌。

④ 【人教版】高中數學教材總目錄

總目錄如下:

必修一

第一章 集合

1.集合的含義與表示

2.集合的基本關系

3.集合的基本運算

3.1交集與並集

3.2全集與補集

第二章 函數

1.生活中的變數關系

2.對函數的進一步認識

2.1函數的概念

2.2函數的表示方法

2.3映射

3.函數的單調性

4.二次函數性質的再研究

4.1二次函數的圖像

4.2二次函數的性質

5.簡單的冪函數

第二章 指數函數與對數函數

1.正指數函數

2.指數擴充及其運算性質

2.1指數概念的擴充

2.2指數運算是性質

3.指數函數

3.1指數函數的概念

3.2指數函數 的圖像和性質

3.3指數函數的圖像和性質

4.對數

4.1對數及其運算

4.2換底公式

5.對數函數

5.1對數函數的概念

5.2 的圖像和性質

5.3對數函數的圖像和性質

6.指數函數、冪函數、對數函數增長的比較

第四章 函數的應用

1.函數和方程

1.1利用函數性質判定方程解的存在

1.2利用二分法求方程的近似解

2.實際問題的函數建模

2.1實際問題的函數刻畫

2.2用函數模型解決實際問題

2.3函數建模案例

必修二

第一章 立體幾何初步

1.簡單幾何體

1.1簡單旋轉體

1.2簡單多面體

2.直觀圖

3.三視圖

3.1簡單組合體的三視圖

3.2由三視圖還原成實物圖

4.空間圖形的基本關系與公理

4.1空間圖形基本關系的認識

4.2空間圖形的公理

5.平行關系

5.1平行關系的判定

5.2平行關系的性質

6.垂直關系

6.1垂直關系的判定

6.2垂直關系的性質

7.簡單幾何體的面積和體積

7.1簡單幾何體的側面積

7.2稜柱、棱錐、稜台和圓柱、圓錐、圓台的體積

7.3球的表面積和體積

第二章 解析幾何初步

1.直線和直線的方程

1.1直線的傾斜角和斜率

1.2直線的方程

1.3兩條直線的位置關系

1.4兩條直線的交點

1.5平面直接坐標系中的距離公式

2.圓和圓的方程

2.1圓的標准方程

2.2圓的一般方程

2.3直線與圓、圓與圓的位置關系

3.空間直角坐標系

3.1空間直接坐標系的建立

3.2空間直角坐標系中點的坐標

3.3空間兩點間的距離公式

必修三

第一章 統計

1.從普查到抽樣

2.抽樣方法

2.1簡單隨機抽樣

2.2分層抽樣與系統抽樣

3.統計圖表

4.數據的數字特徵

4.1平均數、中位數、眾數、極差、方差

4.2標准差

5.用樣本估計總體

5.1估計總體的分布

5.2估計總體的數字特徵

6.統計活動:結婚年齡的變化

7.相關性

8.最小二乘估計

第二章 演算法初步

1.演算法的基本思想

1.1演算法案例分析

1.2排序問題與演算法的多樣性

2.演算法框圖的基本結構及設計

2.1順序結構與選擇結構

2.2變數與賦值

2.3循環結構

3.幾種基本語句

3.1條件語句

3.2 循環語句

第三章 概率

1.隨機事件的概率

1.1頻率與概率

1.2生活中的概率

2.古典概型

2.1古典概型的特徵和概率計算公式

2.2建立概率模型

2.3互斥事件

3.模擬方法——概率的應用

必修四

第一章 三角函數

1.周期現象

2.角的概念的推廣

3.弧度制

4.正弦函數和餘弦函數的定義與誘導公式

4.1任意角的正弦函數、餘弦函數的定義

4.2單位圓與周期性

4.3單位圓與誘導公式

5.正弦函數的性質與圖像

5.1從單位圓看正弦函數的性質

5.2正弦函數的圖像

5.3正弦函數的性質

6.餘弦函數的圖像和性質

6.1餘弦函數的圖像

6.2餘弦函數的性質

7.正切函數

7.1正切函數的定義

7.2正切函數的圖像和性質

7.3正切函數的誘導公式

8.函數的圖像

9.三角函數的簡單應用

第二章 平面向量

1.從位移、速度、力到向量

1.1位移、速度和力

1.2向量的概念

2.從位移的合成到向量的加法

2.1向量的加法

2.2向量的減法

3.從速度的倍數到數乘向量

3.1數乘向量

3.2平面向量基本定理

4.平面向量的坐標

4.1平面向量的坐標表示

4.2平面向量線性運算的坐標表示

4.3向量平行的坐標表示

5.從力做的功到向量的數量積

6.平面向量數量積的坐標表示

7.向量應用舉例

7.1點到直線的距離公式

7.2向量的應用舉例

第三章 三角恆等變形

1.同角三角函數的基本關系

2.兩角和與差的三角函數

2.1兩角差的餘弦函數

2.2兩角和與差的正弦、餘弦函數

2.3兩角和與差的正切函數

3.二倍角的三角函數

必修五

第一章 數列

1.數列

1.1數列的概念

1.2數列的函數特性

2.等差數列

2.1等差數列

2.2等差數列的前n項和

3.等比數列

3.1等比數列

3.2等比數列的前n項和

4.數列在日常經濟生活中的應用

第二章 解三角形

1.正弦定理與餘弦定理

1.1正弦定理

1.2餘弦定理

2.三角形中的幾何計算

3.解三角形的實際應用舉例

第三章 不等式

1.不等關系

1.1不等關系

1.2不等關系與不等式

2.一元二次不等式

2.1一元二次不等式的解法

2.2一元二次不等式的應用

3.基本不等式

3.1基本不等式

3.2基本不等式與最大(小)值

4.簡單線性規劃

4.1二元一次不等式(組)與平面區域

4.2簡單線性規劃

4.3簡單線性規劃的應用

選修2-1

第一章 常用邏輯用語

1.命題

2.充分條件與必要條件

2.1充分條件

2.2必要條件

2.3充要條件

3.全稱量詞與存在量詞

3.1全稱量詞與全稱命題

3.2存在量詞與特稱命題

3.3全稱命題與特稱命題的否定

4.邏輯連結詞「且」「或」「非」

4.1邏輯連結詞「且」

4.2邏輯連結詞「或」

4.3邏輯連結詞「非」

第二章 空間向量與立體幾何

1.從平面向量到空間向量

2.空間向量的運算

3.向量的坐標表示和空間向量基本定理

3.1空間向量的標准正交分解與坐標表示

3.2空間向量基本定理

3.3空間向量運算的坐標表示

4.用向量討論垂直與平行

5.夾角的計算

5.1直線間的夾角

5.2平面間的夾角

5.3直線與平面的夾角

6.距離的計算

第三章圓錐曲線與方程

1.橢圓

1.1橢圓及其標准方程

1.2橢圓的簡單性質

2.拋物線

2.1拋物線及其標准方程

2.2拋物線的簡單性質

3.雙曲線

3.1雙曲線及其標准方程

3.2雙曲線的簡單性質

4.曲線與方程

4.1 曲線與方程

4.2圓錐曲線的共同特徵

4.3直線與圓錐曲線的交點

選修2-2

第一章 推理與證明

1.歸納與類比

1.1歸納推理

1.2類比推理

2.綜合法與分析法

2.1綜合法

2.2分析法

3.反證法

4.數學歸納法

第二章 變化率與導數

1.變化的快慢與變化率

2.導數的概念及其幾何意義

2.1導數的概念

2.2導數的幾何意義

3.計算導數

4.導數的四則運演算法則

4.1導數的加法與減法法則

4.2導數的乘法與除法法則

5.簡單復合函數的求導法則

第三章 導數的應用

1.函數的單調性與極值

1.1導數與函數的單調性

1.2函數的極值

2.導數在實際問題中的應用

2.1實際問題中導數的意義

2.2最大值、最小值問題

第四章 定積分

1.定積分的概念

1.1定積分的背景——面積和路程問題

1.2定積分

2.微積分基本定理

3.定積分的簡單應用

3.1平面圖形的面積

3.2簡單幾何體的體積

第五章 數系的擴充與復數的引入

1.數系的擴充與復數的引入

1.1數的概念的擴展

1.2復數的有關概念

2.復數的四則運算

2.1復數的加法與減法

2.2復數的乘法與除法

(4)課程教材研究所小學數學人教版擴展閱讀:

人教版即由人民教育出版社出版,簡稱為人教版。

數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。

其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).

在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.

代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.

直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.

現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。

數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身。

⑤ 小學教材人教版和蘇教版有什麼區別

小學教材人教版和蘇教版有什麼區別:

1、人教版教材這一節重在概念的構建和能力的提高,需要學生自主構建相關概念,組建自己的知識體系。而蘇教版教材這一節重在知識的傳授、概念的構建,教材本身具有較強的系統性,但在激發學生思維方面稍有欠缺。

2、在材料的組織方面,蘇教版教材的各種材料集中服務於知識本身,比如選擇的圖片雖然能夠貼切地說明相對應的知識,但與學生的日常生活相隔較遠,而在這一方面有所改善,能給學生以親切感。

3、人教版教材知識內容較多較復雜、方法指導形式多樣,對於剛剛從小學步入初中的孩子們來說難度較大。蘇教版教材知識內容相對簡單,方法指導融入知識的學習中沒有刻意單獨列出,對初一新生來說難度較小。

4、與蘇教版教材相比,人教版教材的開放程度更大,從模仿蘇聯教材到模仿英美教材的轉變幅度更大,教材知識本身的系統性相對較差。人教版教材對初中生物教師的專業程度要求更高,非專業教師授課的難度更大。

(5)課程教材研究所小學數學人教版擴展閱讀

「人教版」一般是就教科書意義而言的,是相對於其他出版社出版的教科書而言的。如長春出版社出版的教科書稱為「長春版」、廣東教育出版社出版的教科書稱為「粵教版」、上海教育出版社出版的教科書稱為「滬教版」。可見所謂「人教」指的是「人民教育出版社」,所謂「版」指的是教科書版本,而非「出版社」的「版」。 因此,「人教版」指的是由人民教育出版社出版的教科書版本。

比如我國中小學教育輔導報刊中,《語文報》、《中學生學習報》、《學苑新報》等均有著不同版本的教輔報紙,諸如人教大綱版、人教新課標版等。這兩個版本名稱均是配合由人民教育出版社出版的教科書的報紙,是新課改前後的版本名稱。隨著新課改的深入,前者逐漸退出歷史舞台,後者便統一稱為人教版。本套教科書是由課程教材研究所與xx(科目)課程教材研究開發中心編著,由新華書店集團發行。

參考資料人教版_網路

⑥ 人民教育出版社、課程教材研究所小學數學課程教材研究開發中心編寫的《義務教育課程標准實驗教科書數學(1

更簡單一些 講究掌握多種解法 增強實用性 有趣味性 注重過程而不是結果

⑦ 人教版小學五年級上冊數學教學大綱

《義務教育課程標准實驗教科書數學》五年級上冊說明

人民教育出版社小學數學室、課程教材研究所小學數學課程教材研究開發中心編寫的《義務教育課程標准實驗教科書 數學》五年級上冊,是以《全日制義務教育數學課程標准(實驗稿)》(以下簡稱《標准》)的基本理念和所規定的教學內容為依據,在總結現行九年義務教育小學數學教材研究和使用經驗的基礎上編寫的。編者一方面努力體現新的教材觀、教學觀和學習觀,同時注意所採用措施的可行性,使實驗教材具有創新、實用、開放的特點。另一方面注意處理好繼承與發展的關系,既注意反映數學教育改革的新理念,又注意保持我國數學教育的優良傳統,使教材具有基礎性、豐富性和發展性。

下面就這冊教材中幾個主要問題作一簡要說明,以供教師參考。

一、教學內容和教學目標

這一冊教材包括下面一些內容:小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。

小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。

在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。

本冊教材根據學生所學習的數學知識和生活經驗,安排了兩個數學綜合應用的實踐活動,讓學生通過小組合作的探究活動,運用所學知識解決問題,體會探索的樂趣和數學的實際應用,感受用數學的愉悅,培養數學意識和實踐能力。
這一冊教材的教學目標是,使學生:

1.比較熟練地進行小數乘法和除法的筆算。

2.在具體情境中會用字母表示數,理解等式的性質,會用等式的性質解簡單的方程,用方程表示簡單情境中的等量關系並解決問題。

3.探索並掌握平行四邊形、三角形、梯形的面積公式。

4.能辨認從不同方位看到的物體的形狀和相對位置。

5.理解中位數的意義,會求數據的中位數。

6.體驗事件發生的等可能性以及游戲規則的公平性,會求一些事件發生的可能性;能對簡單事件發生的可能性作出預測,進一步體會概率在現實生活中的作用。

7.經歷從實際生活中發現問題、提出問題、解決問題的過程,體會數學在日常生活中的作用,初步形成綜合運用數學知識解決問題的能力。

8.初步了解數字編碼的思想方法,培養發現生活中的數學的意識,初步形成觀察、分析及推理的能力。

9.體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。

10.養成認真作業、書寫整潔的良好習慣。

熱點內容
武漢大學學生會輔導員寄語 發布:2021-03-16 21:44:16 瀏覽:612
七年級學生作文輔導學案 發布:2021-03-16 21:42:09 瀏覽:1
不屑弟高考成績 發布:2021-03-16 21:40:59 瀏覽:754
大學畢業證會有成績單 發布:2021-03-16 21:40:07 瀏覽:756
2017信陽學院輔導員招聘名單 發布:2021-03-16 21:40:02 瀏覽:800
查詢重慶2018中考成績查詢 發布:2021-03-16 21:39:58 瀏覽:21
結業考試成績怎麼查詢 發布:2021-03-16 21:28:40 瀏覽:679
14中醫醫師資格筆試考試成績查分 發布:2021-03-16 21:28:39 瀏覽:655
名著賞析課程標准 發布:2021-03-16 21:27:57 瀏覽:881
北京大學商業領袖高端培訓課程 發布:2021-03-16 21:27:41 瀏覽:919