當前位置:首頁 » 學校課程 » 小學數與代數之間課程內容有哪些

小學數與代數之間課程內容有哪些

發布時間: 2021-03-09 11:13:13

㈠ 小學數學數與代數包含哪幾個方面

四個方面吧:整數、百分數、小數、分數

知識點一:整數

整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。

知識點二:百分數

百分數是表示一個數是另一個數的百分之幾,也叫百分率或百分比。百分數通常不會寫成分數的形式,而採用符號「%」(百分號)來表示

知識點三 :小數

小數,是實數的一種特殊的表現形式。所有分數都可以表示成小數,小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界號。其中整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數。

知識點四 :分數

分數表示一個數是另一個數的幾分之幾,或一個事件與所有事件的比例。把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫分數。分子在上,分母在下。

(1)小學數與代數之間課程內容有哪些擴展閱讀

《小學數學課程標准》關於數學的具體要求要求

一:整數

1、自然數

2、正數

3、負數

知識點二:小數

1、小數的意義

2、小數大小的比較

3、數的改寫與求近似數

知識點三:分數

1、分數的意義

2、分數單位

3、分數的分類

4、分數的基本性質

5、分數與除法的關系

知識點四 :百分數

1、 求常見的百分率

2、 求一個數比另一個數多(或少)百分之幾

3、 求一個數的百分之幾是多少

4、 已知一個數的百分之幾是多少,求這個數

5、 折扣

㈡ 請問人教版小學數學每一年級「數與代數」都有哪些內容呢

人教版小學數學「數與代數」

一上

數一數;
比一比;
1~5的認識;
6~10的認識;
11~20各數的認識

1~5的加減法;
6~10的加減法;
20以內進位加法;
20以內連加、連減、加減混合

認識鍾表(整時、半時)

按規律填數

一下

100以內數的認識

20以內退位減法;
100以內加法和減法(整十數加減整十數)

認識人民幣(元、角、分之間關系);
認識鍾表(幾時幾分)

找規律(圖形與數字中的簡單規律)

二上

100以內的加法和減法(兩位數加兩位數;兩位數減兩位數;連加、連減和加減混和;加減法估算);
表內乘法(乘法的初步認識、2-6的乘法口訣);
表內乘法(7、8、9的乘法法口)

長度單位(厘米、米)

簡單地排列與組合

二下

萬以內數的認識

解決問題(有小括弧的兩步加減、乘加乘減);
表內除法(除法的初步認識、用2-6的乘法口訣求商);
表內除法(用7、8、9的乘法口訣求商);
萬以內的加法和減法(一)

重量單位(克與千克);
有多重

找規律(探索圖形與數的稍復雜排列規律)

三上

分數的初步認識

萬以內的加法和減法(驗算);
有餘數的除法(除法豎式格式);
多位數乘一位數;
分數的簡單計算

測量單位(毫米、分米、千米、噸);
時、分、秒;

稍復雜的排列與組合問題(搭配問題)

三下

小數的初步認識

除數是一位數的除法;
兩位數乘一位數;
簡單的小數加減法;
解決問題(××、 ÷÷、×÷、×+、×-、÷+、÷-);

年、月、日;
24時記時法;
製作年歷;

集合、等量代換

四上

大數的認識(億以內數的認識;億以上數的認識;1億有多大)

三位數乘兩位數(出現積的變化規律;估算);
除數是兩位數的除法

速度、時間、路程

烙餅問題
沏茶問題
卸貨
田忌賽馬(統籌、優化思想)

四下

小數的意義和性質

四則運算;
運算定律與簡便計算;
小數的加法和減法

植樹問題(間隔數、點數關系、方陣)

五上

循環小數

小數乘法(小數乘整數、小數乘小數、積的近似數、連乘、乘加、乘減、整數乘法運算定律推廣到小數);
小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)

簡易方程(用字母表示數、解簡易方程)

探索給定事物中隱含的規律與變化趨勢;
數字編碼

五下

分數的意義、性質;因數與倍數

分數的加法和減法(同分母分數加減法、異分母分數加減法、分數加減混合運算)

找次品(優化思想)

六上

倒數的認識;
比的意義和基本性質;
百分數的認識;

分數乘法;
分數除法;
比和比的應用;
用百分數解決問題;
折扣;

稅率、利率、利息、本金、時間

雞兔同籠

六下

負數的認識;
比例的意義和基本性質

解比例、正比例、反比例

正反比例列方程來解決問題、
圖上距離、實際距離、比例尺

抽屜原理

㈢ 我國小學數學新課程的學習內容分哪幾個方面

一,數與代數,二,空間與圖形,三統計與概率,四實踐與活動

㈣ 1.小學數與代數內容第一學段包括哪些內容

A.數的認識 B.數的運算 C.常見的量 D.式與方程E.正比例\反比例 F.探索規律2.數與代數內容的教學應抓住哪幾條重要的主線? ( A B C D) A.數概念的建立 B.運算的理解和掌握C.問題解決與數量關系 D.代數的初步3.《標准》對整數的認識在第一學段設計了4條內容,下面哪幾條是第一學段的內容?(A B E F) A. 在現實情境中理解萬以內數的意義,能認、讀、寫萬以內的數,能用數表示物體的個數或事物的順序和位置B. 能說出各數位的名稱,理解各數位上的數字表示的意義;知道用算盤可以表示多位數C. 在具體情境中,認識萬以上的數,了解十進制計數法,會用萬、億為單位表示大數D. 結合現實情境感受大數的意義,並能進行估計E. 理解符號<,=,>的含義,能用符號和詞語描述萬以內數的大小F. 在生活情境中感受大數的意義,並能進行估計4.《標准》以於方程學習的要求是:列舉教學中的一個案例,體現了促進學生形成符號意識或模型思想。答: 在第二學段,學生將學習方程的初步知識,如用方程表示簡單情境中的等量關系(3x+2=5, 2x-x=3),了解方程的作用,等式的性質,能用等式的性質解簡單的方程。在這一過程中,學生將掌握等量關系、方程、等式與方程的解等與方程有關的常識及解簡單方程的方法。對於方程作為刻畫現實情境中數量關系,溝通已知數和未知數的一種數學模型提供了一些素材,留下了初步的印象;進而通過解方程求得未知數的值,對實際問題作出合理解答,初步領會方程的意義。因此,《課程標准》增加了「在具體情境中,了解常見的數量關系:總價=單價×數量、路程=速度×時間,並能解決簡單的實際問題。」學生對這些常見數量關系的了解,特別是運用這些數量關系解決問題,是小學階段問題解決的核心。特別是「總價=單價×數量、路程=速度×時間」是小學階段最常用的數量關系,多數實際問題都可以歸結為這兩類數量關系。例如:在四年級下冊「用字母表示數」教學的基礎上第一次教學方 程,涉及的基礎知識比較多,教學內容主要有等式的含義與方程的意義,根據直觀情境里的等量關系列方程;還有等式的性質和解方程的 教學,列方程解答一步計算的實際問題。我們在進行方程教學的過程 時應讓學生在具體情境中認識方程的意義,「含有未知數的等式是方 程」 ,這是用定義的形式來揭示概念。在教學時先教學等式,再教學方程的意義。教學時應注意要讓學生經歷由圖過渡到式子的抽象過程。先通過觀察天平圖,判斷物體的 輕重,再用式子表示兩端物體的質量關系;在交流等式和方程有什麼 關系時,應引導學生觀察具體實例進行說明,這樣能加深學生對方程的認識,還可以引導學生從集合的角度體會這兩個概念之間的關系。 在對方程的意義有了明確的認識之後應循序漸進地教學等式的性質 和用等式的性質解方程, 《數學課程標准》從學生的長遠發展和中小學教學的銜接出發,要求小學階段學生也要利用等式的性質解方程。 為了讓學生聯系等式的性質解方程, 教學時可以讓學生自己說說怎樣 求出 x 的值。同時還要學生注意三點:一是規范解方程的書寫格式, 等式變換時,每個等式的等號要上下對齊;二是利用等式的意義對方程進行檢驗,只要看左右兩邊是不是相等;三是聯繫上面的過程,深 刻領會什麼是「解方程」 。作為教師要知道方程就是一種數學模型, 它是刻畫現實世界中數量相等關系的數學模型。 它可以幫助人們更准 確清晰地認識、描述和把握現實世界。 教學時具體分這樣幾步: (1)明確條件和問題;(2)分析問題中已知 量和未知量的相等關系; (3)把數量間的相等關系「翻譯」成未知數 X 和已知數之間相等關系的方程。這樣的過程就是建立數學模型的過程。

㈤ 小學數學新課標的主要內容有哪些

2014小學數學新課標內容
一、前言
《全日制義務教育數學課程標准(修定稿)》(以下簡稱《標准》)是針對我國義務教育階段的數學教育制定的。根據《義務教育法》.《基礎教育課程改革綱要(試行)》的要求,《標准》以全面推進素質教育,培養學生的創新精神和實踐能力為宗旨,明確數學課程的性質和地位,闡述數學課程的基本理念和設計思路,提出數學課程目標與內容標准,並對課程實施(教學.評價.教材編寫)提出建議。
《標准》提出的數學課程理念和目標對義務教育階段的數學課程與教學具有指導作用,教學內容的選擇和教學活動的組織應當遵循這些基本理念和目標。《標准》規定的課程目標和內容標準是義務教育階段的每一個學生應當達到的基本要求。《標准》是教材編寫.教學.評估.和考試命題的依據。在實施過程中,應當遵照《標准》的要求,充分考慮學生發展和在學習過程中表現出的個性差異,因材施教。為使教師更好地理解和把握有關的目標和內容,以利於教學活動的設計和組織,《標准》提供了一些有針對性的案例,供教師在實施過程中參考。
二、設計理念
數學是研究數量關系和空間形式的科學。數學與人類的活動息息相關,特別是隨著計算機技術的飛速發展,數學更加廣泛應用於社會生產和日常生活的各個方面。數學作為對客觀現象抽象概括而逐漸形成的科學語言與工具,不僅是自然科學和技術科學的基礎,而且在社會科學與人文科學中發揮著越來越大的作用。數學是人類文化的重要組成部分,數學素養是現代社會每一個公民所必備的基本素養。數學教育作為促進學生全面發展教育的重要組成部分,一方面要使學生掌握現代生活和學習中所需要的數學知識與技能,一方面要充分發揮數學在培養人的科學推理和創新思維方面的功能。
義務教育階段的數學課程具有公共基礎的地位,要著眼於學生的整體素質的提高,促進學生全面.持續.和諧發展。課程設計要滿足學生未來生活.工作和學習的需要,使學生掌握必需的數學基礎知識和基本技能,發展學生抽象思維和推理能力,培養應用意識和創新意識,在情感.態度與價值觀等方面都要得到發展;要符合數學科學本身的特點.體現數學科學的精神實質;要符合學生的認知規律和心理特徵.有利於激發學生的學習興趣;要在呈現作為知識與技能的數學結果的同時,重視學生已有的經驗,讓學生體驗從實際背景中抽象出數學問題.構建數學模型.得到結果.解決問題的過程。為此,制定了《標准》的基本理念與設計思路。
基本理念
數學課程應致力於實現義務教育階段的培養目標,體現基礎性.普及性和發展性。義務教育階段的數學課程要面向全體學生,適應學生個性發展的需要,使得:人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。課程內容既要反映社會的需要.數學學科的特徵,也要符合學生的認知規律。它不僅包括數學的結論,也應包括數學結論的形成過程和數學思想方法。課程內容要貼近學生的生活,有利於學生經驗.思考與探索。內容的組織要處理好過程與結果的關系,直觀與抽象的關系,生活化.情境化與知識系統性的關系。課程內容的呈現應注意層次化和多樣化,以滿足學生的不同學習需求。數學活動是師生共同參與.交往互動的過程。有效的數學教學活動是教師教與學生學的統一,學生是數學學習的主體,教師是數學學習的組織者與引導者。數學教學活動必須激發學生興趣,調動學生積極性,引發學生思考;要注重培養學生良好的學習習慣.掌握有效的學習方法。學生學習應當是一個生動活潑的.主動地和富有個性的過程,除接受學習外,動手實踐.自主探索與合作交流也是數學學習的重要方式,學生應當有足夠的時間和空間經歷觀察.實驗.猜測.驗證.推理.計算.證明等活動過程。教師教學應該以學生的認知發展水平和益友的經驗為基礎,面向全體學生,注重啟發式和因材施教,為學生提供充分的數學活動的機會。要處理好教師講授和學生自主學習的關系,通過有效的措施,啟發學生思考,引導學生自主探索,鼓勵學生合作交流,使學生真正理解和掌握基本的數學知識與技能.數學思想和方法,得到必要的數學思維訓練,獲得廣泛的數學活動經驗。學習評價的主要目的是為了全面了解學生數學學習的過程和結果,激勵學生的學習和改進教師的教學。應建立評價目標多元.評價方法多樣的評價體系。評價要關注學生學習的結果,也要關注學習的過程;要關注學生數學學習的水平,也要關注學生在數學活動中所表現出來的情感與態度,幫助學生認識自我,盡力信心。信息技術的發展對數學教育的價值.目標.內容以及教學方式產生了很大的影響。數學課程的設計與實施應根據實際情況合理地運用現代信息技術,要注意信息技術與課程內容的有機結合。要充分考慮計算器.計算機對數學學習內容和方式的影響以及所具有的優勢,大力開發並向學生提供豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的.探索性的數學活動中去。
三、設計思路
(一)關於學段
為了體現義務教育數學課程的整體性,《標准》統籌考慮了九年的課程內容。同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1-3年級).第二學段(4-6年級).第三學段(7-9年級)。設計思路
(二)關於目標《標准》提出義務教育階段數學課程的總體目標和分學段目標,並從知識技能.數學思考.問題解決.情感態度等四個方面具體闡述。《標准》用了「了解(認識).理解.掌握.運用」等認知目標動詞表述知識技能目標的不同水平。一句「基本理念」,數學學習必須注重過程,標《准》使用「經歷(感受).體驗(體會).探索」等認知過程動詞表述學習活動的不同程度。使用這些動詞進行表述是為了更准確地刻畫上述四個方面的具體目標。在《標准》中,這些動詞的具體含義如下。了解(了解認識):從具體事例中知道或舉例說明對象的有關特徵;根據對象的特徵,從具體情景中辨認或者舉例說明對象。理解:描述對象的特徵和由來,闡述此對象與相關對象之間的區別和聯系。掌握:在理解的基礎上,把對象用於新的情境。運用:用已掌握的對象,選擇或創造適當的方法。經歷(感受):在特定的數學活動中,獲得一些感性認識。體驗(體會):參與特定的數學活動,認識或驗證對象的特徵,獲得經驗():驗。探索:獨立或與他人合作參與特定的數學活動,發現對象的特徵及其與相關對象的區別和聯系,獲得理性認識。
(三)關於學習內容之一:數與代數
在各個教學段中,《標准》安排了四個方面的內容:「數與代數」,「圖形與幾何」,「統計與概率」,「綜合與實踐」。數與代數「數與代數」的主要內容有:數的認識,數的表示,數的大小,數的運算,數量的估計;字母表示數,代數式及其運算;方程.方程組.不等式.函數等。
在「數與代數」的教學中,應幫助學生建立數感和符號意識,發展運算能力,樹立模型思想。
數感主要是指關於數與數量表示.數量大小比較.數量和運算結果的估計等方面的直觀感覺。建立「數感」有助於學生理解現實生活中數的意義,理解或表述具體情景中的數量關系。
符號意識主要是指能夠理解並且運用符號表示數.數量關系和變化規律;知道使用符號可以進行一般性的運算和推理。建立「符號意識」有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
運算是「數與代數」的重要內容,運算是基於法則進行的,通常運算滿足一定的運算律。學習這些內容有助於理解運算律,培養運算能力。
模型也是「數與代數」的重要內容,方程.方程組.不等式.函數等都是基本的數學模型。從現實生活或者具體情境中抽象出數學問題,是建立模型的出發點;用符號表示數量關系和變化規律,是建立模型的過程;求出模型的結果並討論結果的意義,是求解模型的過程。這些內容有助於培養學生的學習興趣和應用意識,體會數學建模的過程,樹立模型思想。
關於學習內容之二:圖形與幾何
圖形與幾何「圖形與幾何」主要內容有:空間和平面的基本徒刑,圖形的性質和分類;平面圖形基本性質的證明;圖形的平移.旋轉.軸對稱.相似和投影;運用坐標描述圖形的位置和圖形的運動。
在「圖形與幾何」的學習中,應幫助學生建立空間觀念。空間觀念是指根據物體特徵抽象出幾何圖形,根據幾何圖形想像出所描述的實際物體;能夠想像出空間物體的方位和相互之間的位置關系;根據語言描述或通過想像畫出圖形等。
直觀與推理是「圖形與幾何」學習中的兩個重要方面。幾何直觀是指利用圖形描述幾何或者其他數學問題.探索解決問題的思路.預測結果。在許多情況下,藉助幾何直觀可以把復雜的數學問題變得簡明.形象。幾何直觀不僅在「圖形與幾何」的學習中發揮著不可替代的作用,並且貫穿在整個數學學習中。
推理是數學的基本思維方式,是人們學習和生活中經常使用的思維方式,也因此,與直觀一樣,推理也貫穿在整個數學學習中。推力一般包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比等推測某些結果,是由特殊到一般的過程。演繹推理是從已有的事實(包括定義.公理.定理等)出發,按照規定的法則(包括邏輯和運算)驗證結論,是由一般到特殊的過程。在解決問題的過程中,合情推力有助於探索解決問題的思路.發現結論;演繹推理用於驗證結論的正確性。
關於學習內容之三:統計與概率
統計與概率「統計與概率」主要內容有:收集.整理和描述數據,包括簡單抽樣.記錄調查數據.描繪統計圖表等;處理數據,包括計算平均數.中位數.眾數.極差.方差等;從數據中提取信息並進行簡單的判斷。簡單隨機事件及其發生的概率。
在「統計與概率」中,幫助學生逐漸建立起數據分析的觀念是重要的。數據分析包括:了解在現實生活中有許多問題應當先做調查研究.收集數據,通過分析作出判斷,體會數據中是蘊涵著信息的;體驗數據是隨機的和有規律的,一方面對於同樣的事情每次收集到的數據可能會是不同的,另一方面只要有足夠的數據就可能從中發現規律;了解對於同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法。在概率的學習中,所涉及的隨機現象都基於簡單事件:所有可能發生的結果是有限的.每個結果發生的可能性是相同的。「統計與概率」的內容與現實生活聯系密切,必須結合具體案例組織教學。
關於學習內容之四:綜合與實踐
綜合與實踐「綜合與實踐」是以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。針對問題情景,學生藉助所學的知識和生活經驗,獨立思考或與他人合作,經歷發現問題和提出問題.分析問題和解決問題的全過程,感悟數學各部分內容之間.數學與生活實際之間及其他學科的聯系,激發學生學習數學的興趣,加深學生對所學數學內容的理解。
這種類型的課程對於培養學生的抽象能力和邏輯思維能力.對於培養學生的創新意識和應用能力是有益處的,還有利於培養學生的合作精神。合理地設計課程內容以及教學方法是達到教學目標的關鍵,既要考慮學生的直接經驗.能夠啟發學生思考,也要考慮問題的數學實質.培養學生的數學素養。這種類型的課程對教師是一種挑戰,教師應努力把握住問題的本質,能夠引導學生思考,同時,教師又應努力幫助學生整理清楚自己的思路,指導學生以不同的形式展示自己的成果或報告自己的工作。這種類型的課程應當貫徹「少而精」的原則,保證每學期至少一次。它可以在課堂上完成,也可以將課內外相結合。
關於實施建議
為了保證《標准》的順利實施,《標准》分別對教學活動.學習評價,以及教材編寫.課程資源的開發與利用等方面提出了實施建議;同時,為了更好地說明課程內容,《標准》在相關部分提供了一些案例。以上內容供有關人員參考.借鑒。
《課標》修改稿---總體目標(1)通過義務教育階段的數學學習,學生能夠:1.獲得適應社會生活和進一步發展所必須的數學的基本知識.基本技能.基本思想.基本活動經驗。2.體會數學知識之間.數學與其他學科之間.數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現問題和提出問題的能力.分析問題和解決問題的能力。3.了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
《課標》修改稿---總體目標(2)知識與技能:*經歷數與代數的抽象運算與建模等過程,掌握數與代數的基礎知識和基本技能。*經歷圖形的抽象.分類.性質探討.運動.位置確定等過程,掌握圖形與幾何的基礎知識和基本技能。*經歷在實際問題中收集和處理數據.利用數據分析問題.獲得信息的過程,掌握統計與概率的基礎知識和基本技能。*參與綜合實踐活動,積累綜合運用數學知識.技能和方法解決簡單實際問題的數學活動經驗。
數學思考
*體會代數表示運算和幾何直觀等方面的作用,初步建立數感.符號意識和空間觀念,發展形象思維和抽象思維。*了解數據和隨機現象,體會統計方法的意義,發展數據分析和隨機觀念。*在參與觀察.實驗.猜想.證明.綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。*學會獨立思考,體會數學的基本思想和思維方式。
問題解決
*初步學會從數學的角度發現問題和提出問題,綜合運用數學知識和其他知識解決簡單的數學問題,發展應用意識和實踐能力。*獲得分析問題和解決問題的一些基本方法,體驗解決問題方法的多樣性,發展創新意識。
情感態度
*學會與他人合作.交流。*初步形成評價與反思的意識。*積極參與數學活動,對數學有好奇心和求知慾。*體驗獲得成功的樂趣,鍛煉克服困難的意志,建立學好數學的自信心。*體會數學的特點,了解數學的價值。*養成勇於質疑的習慣,形成實事求是的態度。
《課標》修改稿---總體目標(3)總體目標的四個方面,不是互相獨立和割裂的,而是一個密切聯系.相互交融的有機整體。課程組織和教學活動中,應同時兼顧四個方面的目標。這些目標的實現,使學生受到良好數學教育的標志,它對學生的全面.持續.和諧發展,有著重要的意義。數學思考.問題解決.情感態度的發展離不開知識技能的學習,知識技能的學習必須有利於其他三個目標的實現。
《課標》修改稿---學段目標
第一學段(1-3年級)
知識技能
1.經歷從日常生活中抽象出數的過程,理解常見的量;了解四則運算的意義,掌握必要的運算技能。了解估算。
2.經歷從實際物體中抽象出簡單幾何體和平面圖形的過程,了解一些簡單幾何體和常見的平面圖形;感受平移.旋轉.軸對稱,認識物體的相對位置。掌握初步的測量.識圖和畫圖的技能。
3.經歷數據的收集和整理的過程,了解簡單的數據處理方法。
數學思考
1.能夠理解身邊有關數字的信息,會用數(合適的量綱)描述現實生活中的簡單現象。發展數感。
2.再討論簡單物體性質的過程中,發展空間觀念。
3.在教師的指導下,能對簡單的調查數據歸類。
4.會思考問題,能表達自己的想法;在討論問題過程中,能夠初步辨別結論的共同點和不同點。
問題解決
1.能在教師的指導下,從日常生活中發現和提出簡單的數學問題。
2.獲得分析問題和解決問題的一些基本方法,知道同一問題可以有不同的解決方法。
3.體驗與他人合作交流.解決問題的過程。
4.初步學會整理解決問題的過程和結果。
情感態度
1.對身邊與數學有關的事務(現象)有好奇心,能夠參與數學活動。
2.在他人幫助下,體驗克服數學活動中的困難的過程。
3.了解數學可以描述生活中的一些現象,感受數學與生活有密切聯系。
4.在解決問題的過程中,養成詢問「為什麼」的習慣。
第二學段(4-6年級)
知識技能
1.體驗從具體情境中抽象出數的過程;理解分數.百分數的意義,了解負數,掌握必要的運算技能;理解估算的意義;掌握用方程表示簡單的數量關系.解簡單方程的方法。
2.探索一些圖形的形狀.大小和位置關系,了解一些幾何體和平面圖形的基本特徵;體驗圖形的簡單運動,了解確定物體位置的方法,掌握測量.識圖和畫圖的基本方法。
3.歷數據的收集.理和分析的過程,握一些簡單的數據處理技能;經整掌體驗事件發生的等可能性,掌握簡單的計算等可能性的方法。
數學思考
1.能夠對生活中的數字信息作出合理的解釋,會用數(合適的量綱).字母和圖表描述生活中的簡單問題;初步形成數感,發展符號意識。
2.在探索簡單圖形的性質.運動現象的過程中,初步形成空間觀念。
3.能根據解決問題的需要,收集與表示數據,歸納出有用的信息
4.能進行有條理的思考,能清楚地表達思考的過程與結果;在與他人交流過程中,能夠進行簡單的辯論。
問題解決
1.能從社會生活中發現並提出簡單的數學問題。
2.能探索分析問題.解決問題的有效方法,了解解決問題方法的多樣性。
3.能藉助於數字計算器解決簡單的計算問題。
4.初步學會與他人合作解決問題,嘗試解釋自己的思考過程。
5.能初步判斷結果的合理性,經歷回顧與分析解決問題過程的活動。
情感態度
1.願意了解社會生活中與數學相關的信息,主動參與數學學習活動。
2.在他人的鼓勵和引導下,嘗試克服數學活動中遇到的困難,相信自己能夠學好數學。
3.在運用數學解決問題的過程中,體驗數學的價值。
4.初步養成樂於思考.實事求是.勇於質疑等良好品質。

第三學段(7-9年級)
知識技能
1.體驗從具體情境中抽象出數學符號的過程;理解有理數.實數.代數式.方程.不等式.函數。掌握必要的運算(包括估算)技能;探索具體問題中的數量關系和變化規律,掌握用代數.方程.不等式進行表述的方式。
2.探索並理解圖形的基本性質.位置關系和平移.旋轉.軸對稱等。掌握三角形.四邊形的基本性質(包括判定),掌握基本的證明方法。
3.體驗數據收集.處理.分析和推斷過程,理解抽樣方法;體驗用樣本估計總體的過程,理解頻率。理解計算簡單事件概率的方法。數學思考
1.能從具體情境中抽象出數量關系,並且能用代數式.方程.不等式.函數等表述,體會模型的思想。
2.在研究圖形運動現象.確定物體位置的過程中,進一步發展空間觀念,初步建立幾何直觀。
3.初步建立數據觀念,理解通過數據進行統計推斷的合理性。
4.步形成通過實例探索數學結論的思維方式。多種形式的數學活動中,初在發展合情推理與演繹推理的能力。
問題解決
1.嘗試在具體的情境中,從數學的角度發現問題和提出問題。
2.試從不同角度尋求分析問題和解決問題的方法,解不同方法的差異。嘗了
3.在與他人合作和交流過程中,能較好地理解他人的思考方法和結論。
4.在表述自己的想法時,能針對他人所提的問題進行反思。
情感態度
1.願意談論某些數學話題,能夠在數學學習活動中發揮一定的作用。
2.體驗獨立克服困難.解決數學過程的過程,有克服困難的勇氣,具備學好數學的信心。
3.在運用數學表達現實.解決問題的過程中,認識數學抽象.嚴謹和應用廣泛的特點,體會數學的價值。
4.勇於發表自己的觀點,質疑他人的觀點,養成良好的學習習慣。

㈥ 小學數與代數內容第一學段包括哪些內容

(一)數的認識
1. 在現實情境中理解萬以內數的意義,能認、讀、寫萬以內的數,能用數表示物體的個數或事物的順序和位置。
2. 能說出各數位的名稱,理解各數位上的數字表示的意義;知道用算盤可以表示多位數。(參見例1)
3. 理解符號<,=,>的含義,能用符號和詞語描述萬以內數的大小(參見例2)。
4. 在具體情境中感受大數的意義,並能進行估計(參見例3)。
5. 能結合具體情境初步認識小數和分數,能讀、寫小數和分數。
6. 能結合具體情境比較兩個一位小數的大小,能比較兩個同分母分數的大小。
7. 能運用數表示日常生活中的一些事物,並進行交流(參見例4)。

(二)數的運算
1. 結合具體情境,體會整數四則運算的意義(參見例5)。
2. 能熟練地口算20以內的加減法和表內乘除法,能口算百以內的加減法和一位數乘除兩位數。
3. 能計算三位數的加減法,一位數乘三位數、兩位數乘兩位數的乘法,三位數除以一位數的除法。
4.能進行簡單的整數四則混合運算(兩步)。
5. 會進行同分母分數(分母小於10)的加減運算以及一位小數的加減運算。
6. 能結合具體情境進行估算,並解釋估算的過程(參見例6)。
7. 經歷與他人交流各自演算法的過程。
8. 能運用數及數的運算解決生活中的簡單問題,並能對結果的實際意義作出解釋(參見例7)。

(三)常見的量
1. 在現實情境中,認識元、角、分,並了解它們之間的關系。
2. 能認識鍾表,了解24時記時法;結合自己的生活經驗,體驗時間的長短(參見例8)。
3. 認識年、月、日,了解它們之間的關系。
4. 在現實情境中,感受並認識克、千克、噸,能進行簡單的單位換算。
5. 結合生活實際,解決與常見的量有關的簡單問題。

(四)探索規律
探索簡單的變化規律(參見例9、例10)。

㈦ 小學數學的學習內容有哪些

加減乘除、方程、圖形面積、統計、路程問題。差不多了,還有一些零零散散的

㈧ 小學數與代數內容第一學段包括哪些內容

以數學為例說明,各個學科都是各自的特點第一部分前言數學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,並進行廣泛應用的過程。20世紀中葉以來,數學自身發生了巨大的變化,特別是與計算機的結合,使得數學在研究領域、研究方式和應用范圍等方面得到了空前的拓展。數學可以幫助人們更好地探求客觀世界的規律,並對現代社會中大量紛繁復雜的信息作出恰當的選擇與判斷,同時為人們交流信息提供了一種有效、簡捷的手段。數學作為一種普遍適用的技術,有助於人們收集、整理、描述信息,建立數學模型,進而解決問題,直接為社會創造價值。義務教育階段的數學課程,其基本出發點是促進學生全面、持續、和諧地發展。它不僅要考慮數學自身的特點,更應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。一、基本理念1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:--人人學有價值的數學;--人人都能獲得必需的數學;--不同的人在數學上得到不同的發展。2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。內容的呈現應採用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。4.數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。5.評價的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學;應建立評價目標多元、評價方法多樣的評價體系。對數學學習的評價要關注學生學習的結果,更要關注他們學習的過程;要關注學生數學學習的水平,更要關注他們在數學活動中所表現出來的情感與態度,幫助學生認識自我,建立信心。6.現代信息技術的發展對數學教育的價值、目標、內容以及學與教的方式產生了重大的影響。數學課程的設計與實施應重視運用現代信息技術,特別要充分考慮計算器、計算機對數學學習內容和方式的影響,大力開發並向學生提供更為豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有的精力投入到現實的、探索性的數學活動中去。二、設計思路(一)關於學段為了體現義務教育階段數學課程的整體性,《全日制義務教育數學課程標准(實驗稿)》(以下簡稱《標准》)通盤考慮了九年的課程內容;同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1~3年級)、第二學段(4~6年級)、第三學段(7~9年級)。(二)關於目標根據《基礎教育課程改革綱要(試行)》,結合數學教育的特點,《標准》明確了義務教育階段數學課程的總目標,並從知識與技能、數學思考、解決問題、情感與態度等四個方面作出了進一步的闡述。《標准》中不僅使用了「了解(認識)、理解、掌握、靈活運用」等刻畫知識技能的目標動詞,而且使用了「經歷(感受)、體驗(體會)、探索」等刻畫數學活動水平的過程性目標動詞,從而更好地體現了《標准》對學生在數學思考、解決問題以及情感與態度等方面的要求。知識技能目標了解(認識)能從具體事例中,知道或能舉例說明對象的有關特徵(或意義);能根據對象的特徵,從具體情境中辨認出這一對象。理解能描述對象的特徵和由來;能明確地闡述此對象與有關對象之間的區別和聯系。掌握能在理解的基礎上,把對象運用到新的情境中。靈活運用能綜合運用知識,靈活、合理地選擇與運用有關的方法完成特定的數學任務。過程性目標經歷(感受)在特定的數學活動中,獲得一些初步的經驗。體驗(體會)參與特定的數學活動,在具體情境中初步認識對象的特徵,獲得一些經驗。探索主動參與特定的數學活動,通過觀察、實驗、推理等活動發現對象的某些特徵或與其他對象的區別和聯系。(三)關於學習內容在各個學段中,《標准》安排了「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個學習領域。課程內容的學習,強調學生的數學活動,發展學生的數感、符號感、空間觀念、統計觀念,以及應用意識與推理能力。數感主要表現在:理解數的意義;能用多種方法來表示數;能在具體的情境中把握數的相對大小關系;能用數來表達和交流信息;能為解決問題而選擇適當的演算法;能估計運算的結果,並對結果的合理性作出解釋。符號感主要表現在:能從具體情境中抽象出數量關系和變化規律,並用符號來表示;理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。空間觀念主要表現在:能由實物的形狀想像出幾何圖形,由幾何圖形想像出實物的形狀,進行幾何體與其三視圖、圖之間的轉化;能根據條件做出立體模型或畫出圖形;能從較復雜的圖形中分解出基本的圖形,並能分析其中的基本元素及其關系;能描述實物或幾何圖形的運動和變化;能採用適當的方式描述物體間的位置關系;能運用圖形形象地描述問題,利用直觀來進行思考。統計觀念主要表現在:能從統計的角度思考與數據信息有關的問題;能通過收集數據、描述數據、分析數據的過程作出合理的決策,認識到統計對決策的作用;能對數據的來源、處理數據的方法,以及由此得到的結果進行合理的質疑。應用意識主要表現在:認識到現實生活中蘊含著大量的數學信息、數學在現實世界中有著廣泛的應用;面對實際問題時,能主動嘗試著從數學的角度運用所學知識和方法尋求解決問題的策略;面對新的數學知識時,能主動地尋找其實際背景,並探索其應用價值。推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。為了體現數學課程的靈活性和選擇性,《標准》在內容標准中僅規定了學生在相應學段應該達到的基本水平,教材編者及各地區、學校,特別是教師應根據學生的學習願望及其發展的可能性,實施因材施教。同時,《標准》並不規定內容的呈現順序和形式,教材可以有多種編排方式。(四)關於實施建議《標准》針對教學、評價、教材編寫、課程資源的利用與開發提出了建議,供有關人員參考,以保證《標准》的順利實施。為了解釋與說明相應的課程目標或課程實施建議,《標准》還提供了一些案例,供參考。第二部分課程目標一、總體目標通過義務教育階段的數學學習,學生能夠:●獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能;●初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題,增強應用數學的意識;●體會數學與自然及人類社會的密切聯系,了解數學的價值,增進對數學的理解和學好數學的信心;●具有初步的創新精神和實踐能力,在情感態度和一般能力方面都能得到充分發展。具體闡述如下:知識與技能●經歷將一些實際問題抽象為數與代數問題的過程,掌握數與代數的基礎知識和基本技能,並能解決簡單的問題。●經歷探究物體與圖形的形狀、大小、位置關系和變換的過程,掌握空間與圖形的基礎知識和基本技能,並能解決簡單的問題。●經歷提出問題、收集和處理數據、作出決策和預測的過程,掌握統計與概率的基礎知識和基本技能,並能解決簡單的問題。數學思考●經歷運用數學符號和圖形描述現實世界的過程,建立初步的數感和符號感,發展抽象思維。●豐富對現實空間及圖形的認識,建立初步的空間觀念,發展形象思維。●經歷運用數據描述信息、作出推斷的過程,發展統計觀念。●經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點。解決問題●初步學會從數學的角度提出問題、理解問題,並能綜合運用所學的知識和技能解決問題,發展應用意識。●形成解決問題的一些基本策略,體驗解決問題策略的多樣性,發展實踐能力與創新精神。●學會與人合作,並能與他人交流思維的過程和結果。●初步形成評價與反思的意識。情感與態度●能積極參與數學學習活動,對數學有好奇心與求知慾。●在數學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心。●初步認識數學與人類生活的密切聯系及對人類歷史發展的作用,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性。●形成實事求是的態度以及進行質疑和獨立思考的習慣。以上四個方面的目標是一個密切聯系的有機整體,對人的發展具有十分重要的作用,它們是在豐富多彩的數學活動中實現的。其中,數學思考、解決問題、情感與態度的發展離不開知識與技能的學習,同時,知識與技能的學習必須以有利於其他目標的實現為前提。二、學段目標,第一學段(1~3年級)第二學段(4~6年級)第三學段(7~9年級)知識與技能●經歷從日常生活中抽象出數的過程,認識萬以內的數、小數、簡單的分數和常見的量;了解四則運算的意義,掌握必要的運算(包括估算)技能。●經歷直觀認識簡單幾何體和平面圖形的過程,了解簡單幾何體和平面圖形,感受平移、旋轉、對稱現象,能初步描述物體的相對位置,獲得初步的測量(包括估測)、識圖、作圖等技能。●對數據的收集、整理、描述和分析過程有所體驗,掌握一些簡單的數據處理技能;初步感受不確定現象。●經歷從現實生活中抽象出數及簡單數量關系的過程,認識億以內的數,了解分數、百分數、負數的意義,掌握必要的運算(包括估算)技能;探索給定事物中隱含的規律,會用方程表示簡單的數量關系,會解簡單的方程。●經歷探索物體與圖形的形狀、大小、運動和位置關系的過程,了解簡單幾何體和平面圖形的基本特徵,能對簡單圖形進行變換,能初步確定物體的位置,發展測量(包括估測)、識圖、作圖等技能。●經歷收集、整理、描述和分析數據的過程,掌握一些數據處理技能;體驗事件發生的等可能性、游戲規則的公平性,能計算一些簡單事件發生的可能性。●經歷從具體情境中抽象出符號的過程,認識有理數、實數、代數式、方程、不等式、函數;掌握必要的運算(包括估算)技能;探索具體問題中的數量關系和變化規律,並能運用代數式、方程、不等式、函數等進行描述。●經歷探索物體與圖形的基本性質、變換、位置關系的過程,掌握三角形、四邊形、圓的基本性質以及平移、旋轉、軸對稱、相似等的基本性質,初步認識投影與視圖,掌握基本的識圖、作圖等技能;體會證明的必要性,能證明三角形和四邊形的基本性質,掌握基本的推理技能。●從事收集、描述、分析數據,作出判斷並進行交流的活動,感受抽樣的必要性,體會用樣本估計總體的思想,掌握必要的數據處理技能;進一步豐富對概率的認識,知道頻率與概率的關系,會計算一些事件發生的概率。數學思考●能運用生活經驗,對有關的數字信息作出解釋,並初步學會用具體的數描述現實世界中的簡單現象。●在對簡單物體和圖形的形狀、大小、位置關系、運動的探索過程中,發展空間觀念。●在教師的幫助下,初步學會選擇有用信息進行簡單的歸納與類比。●在解決問題過程中,能進行簡單的、有條理的思考。●能對現實生活中有關的數字信息作出合理的解釋,會用數、字母和圖表描述並解決現實世界中的簡單問題。●在探索物體的位置關系、圖形的特徵、圖形的變換以及設計圖案的過程中,進一步發展空間觀念。●能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力。●在解決問題過程中,能進行有條理的思考,能對結論的合理性作出有說服力的說明。●能對具體情境中較大的數字信息作出合理的解釋和推斷,能用代數式、方程、不等式、函數刻畫事物間的相互關系。●在探索圖形的性質、圖形的變換以及平面圖形與空間幾何體的相互轉換等活動過程中,初步建立空間觀念,發展幾何直覺。●能收集、選擇、處理數學信息,並作出合理的推斷或大膽的猜測。●能用實例對一些數學猜想作出檢驗,從而增加猜想的可信程度或推翻猜想。●體會證明的必要性,發展初步的演繹推理能力。解決問題●能在教師指導下,從日常生活中發現並提出簡單的數學問題。●了解同一問題可以有不同的解決法。●有與同伴合作解決問題的體驗。●初步學會表達解決問題的大致過程和結果。●能從現實生活中發現並提出簡單的數學問題。●能探索出解決問題的有效方法,並試圖尋找其他方法。●能藉助計算器解決問題。●在解決問題的活動中,初步學會與他人合作。●能表達解決問題的過程,並嘗試解釋所得的結果。●具有回顧與分析解決問題過程的意識。●能結合具體情境發現並提出數學問題。●嘗試從不同角度尋求解決問題的方法,並能有效地解決問題,嘗試評價不同方法之間的差異。●體會在解決問題的過程中與他人合作的重要性。●能用文字、字母或圖表等清楚地表達解決問題的過程,並解釋結果的合理性。●通過對解決問題過程的反思,獲得解決問題的經驗。情感與態度●在他人的鼓勵與幫助下,對身邊與數學有關的某些事物有好奇心,能夠積極參與生動、直觀的數學活動。●在他人的鼓勵與幫助下,能克服在數學活動中遇到的某些困難,獲得成功的體驗,有學好數學的信心。●了解可以用數和形來描述某些現象,感受數學與日常生活的密切聯系。●經歷觀察、操作、歸納等學習數學的過程,感受數學思考過程的合理性。●在他人的指導下,能夠發現數學活動中的錯誤並及時改正。●對周圍環境中與數學有關的某些事物具有好奇心,能夠主動參與教師組織的數學活動。●在他人的鼓勵與引導下,能積極地克服數學活動中遇到的困難,有克服困難和運用知識解決問題的成功體驗,對自己得到的結果正確與否有一定的把握,相信自己在學習中可以取得不斷的進步。●體驗數學與日常生活密切相關,認識到許多實際問題可以藉助數學方法來解決,並可以藉助數學語言來表述和交流。●通過觀察、操作、歸納、類比、推斷等數學活動,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性。●對不懂的地方或不同的觀點有提出疑問的意識,並願意對數學問題進行討論,發現錯誤能及時改正。●樂於接觸社會環境中的數學信息,願意談論某些數學話題,能夠在數學活動中發揮積極作用。●敢於面對數學活動中的困難,並有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心。●體驗數、符號和圖形是有效地描述現實世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具,了解數學對促進社會進步和發展人類理性精神的作用。●認識通過觀察、實驗、歸納、類比、推斷可以獲得數學猜想,體驗數學活動充滿著探索性和創造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。●在獨立思考的基礎上,積極參與對數學問題的討論,敢於發表自己的觀點,並尊重與理解他人的見解;能從交流中獲益。第三部分內容標准本部分分別闡述各個學段中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容標准。「數與代數」的內容主要包括數與式、方程與不等式、函數,它們都是研究數量關系和變化規律的數學模型,可以幫助人們從數量關系的角度更准確、清晰地認識、描述和把握現實世界。「空間與圖形」的內容主要涉及現實世界中的物體、幾何體和平面圖形的形狀、大小、位置關系及其變換,它是人們更好地認識和描述生活空間並進行交流的重要工具。「統計與概率」主要研究現實生活中的數據和客觀世界中的隨機現象,它通過對數據收集、整理、描述和分析以及對事件發生可能性的刻畫,來幫助人們作出合理的推斷和預測。「實踐與綜合應用」將幫助學生綜合運用已有的知識和經驗,經過自主探索和合作交流,解決與生活經驗密切聯系的、具有一定挑戰性和綜合性的問題,以發展他們解決問題的能力,加深對「數與代數」「空間與圖形」「統計與概率」內容的理解,體會各部分內容之間的聯系。

㈨ 一、「數與代數」內容中,教材呈現的主要特點有哪些

把單位"1"平均分成若干份,表示這樣的一份或幾份的數叫做分數。分母表示把一個物體平均分成幾份,分子表示取了其中的幾份。
1 →分子 —→分數線 2 →分母
分數中間的一條橫線叫做分數線,分數線上面的數叫做分子,分數線下面的數叫做分母。
分數一般包括:真分數,假分數,帶分數.
真分數小於1.假分數大於1,或者等於1.帶分數大於1而又是最簡分數.注意①分母和分子中不能有0,否則無意義。 ②分數中不能出現無理數(如2的平方根),否則就不是分數。產生 人類歷史上最早產生的數是自然數(正整數),以後在度量和均分時往往不能正好得到整數的結果,這樣就產生了分數。
整數(Integer)
序列
…,-2,-1,0,1,2,…
中的數稱為整數.整數的全體構成整數集,它是一個環,記作Z(現代通常寫成空心字母Z).環Z的勢是阿列夫0.
在整數系中,自然數為正整數,稱0為零,稱-1,-2,-3,…,-n,… 為負整數.正整數,零與負整數構成整數系.正整數是從古代以來人類計數(counting)的工具.可以說,從「一頭牛,兩頭牛」或是「五個人,六個人」抽象化成正整數的過程是相當自然的.事實上,我們有時候把正整數叫做自然數(the natural numbers).零不僅表示「無」,更是表示空位的符號.中國古代用算籌計算數並進行運算時,空位不放算籌,雖無空 位記號,但仍能為位值記數與四則運算創造良好的條件.印度-阿拉伯命數法中的零(zero)來自印度的(sunya)字,其原意也是「空」或「空白」.中國最早引進了負數.《九章算術.方程》中論述的「正負數」,就是整數的加減法.減法的需要也促進了負整數的引入.減法運算可看作求解方程a+x=b,如果a,b是自然數,則所給方程未必有自然數解.為了使它恆有解,就有必要把自然數系擴大為整數系.
正整數,零,和負整數合稱整數(the integers).整數是人類能夠掌握的最基本的數學工具.十九世紀德國偉大數學家 Kronecker因此說:「只有整數是上帝創造的,其他的都是人類自己製造的.」
小數的意義:分母是10、100、1000……的分數,可以用小數來表示。
小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
小數點的移動:小數點向右移動一位、兩位、三位……小數相應擴大到時原小數的10倍、100倍、1000倍…… 小數點向左移動一位、兩位、三位……小數相應縮小到時原小數的1/10、1/100、1/1000……
小數的使用:利率、稅率……百分數:表示一個數占另一個數的幾分之幾的數,叫做百分數。百分數也叫做百分率或者百分比。百分數通常不寫成分數的形式,而是在分子後面加上百分號「%」
質數:只能被1和自己整除,,不能被其他第三個整數整除的數`1既不是質數也不是合數.
合數:約數至少有3個的數叫做合數.
質因數:把一個書寫成幾個質數連續相乘的形式,他們就叫做質因數.
我們在數物體的時候,用來表示物體個數的數1、2、3、4、5、……,叫做
自然數,也叫做正整數。自然數的個數是無限的。
在自然數的前面加上「-」號,得到的數-1,-2,-3,-4,-5,……叫做負
整數。負整數的個數也是無限的。0既不是負整數也不是正整數。它可以用來表示一個物體也沒有。 我們把正整數,0,負整數,統稱為整數。
分子比分母小的分數叫做真分數。真分數小於1。
分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於1或者等於1
小學六年級的數學書上,把分數分為真分數和假分數兩類,所以帶分數應該屬於假分數.
正比例的意義
(1)正比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做成正比例關系. ①用字母表示:如果用字母x和y表示兩種相關聯的量,用k表示它們的比值,(一定)正比例關系可以用以下關系式表示:②正比例關系兩種相關聯的量的變化規律:同時擴大,同時縮小,比值不變.例如:汽車每小時行駛的速度一定,所行的路程和所用的時間是否成正比例?以上各種商都是一定的,那麼被除數和除數. 所表示的兩種相關聯的量,成正比例關系. 注意:在判斷兩種相關聯的量是否成正比例時應注意這兩種相關聯的量,雖然也是一種量,隨著另一種的變化而變化,但它們相對應的兩個數的比值不一定,它們就不能成正比例. 例如:一個人的年齡和它的體重,就不能成正比關系,正方形的邊長和它的面積也不成正比例關系. 反比例:兩種相關聯的量一種量變化,另種量也隨著變化,如果這兩種量中,相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做成反比例關系. 用字母表示:兩種相關聯的量,分別「x」和「y」表示,「k」表示不變的量,那麼反比例關系式是: xy=k(一定) ②反比例關系的兩種相關聯的量的變化規律是一種量擴大,另一種量縮小,一種量縮而另一種量則擴大,積不變. 例:圖上距離一定,實際距離和比例尺是否成反比例. 因為實際距離×比例尺=圖上距離(一定) 所以,實際距離和比例尺成反比例. 3.正比例和反比例 相同點:兩種量都是相關聯的量,一種量變化,另一種量也隨著變化. 不同點:兩種量成正比例,是一種量擴大,另一種量也隨著擴大,一種量縮小,另一種量也隨著縮小,它們擴大,縮小的規律是,這兩種量相對應的兩個數的比值不變,即商一定. 兩種量成反比例是一種量擴大,另一種量反而縮小一種量縮小,另一種量反而擴大,它們變化的規律是這兩種量中,相對應的兩個數積不變(一定).
反比例
反比例關系是通過應用題的總數與份數關系幫助學生認識的。在總數與份數關系中,包含總數、份數和每份數。當總數一定時,每份數和份數是兩種相關聯的變數。如果每份數變化,份數也隨著變化。同樣如果份數變化,每份數也隨著變化。它們的變化,無論擴大還是縮小,相對應的兩個量的乘積(也就是總數)一定。具體說,當總數一定時,每份數(或份數)擴大或縮小若干倍,份數(或每份數)反而縮小或擴大相同的倍數。簡稱為「一擴一縮(或一縮一擴)」。具備這種變化關系的每份數和份數成反比例關系。反比例關系在典型應用題中屬於歸總問題。反映在除法中,當被除數一定,除數和商成反比例關系。在分數中,當分數的分子一定,分母與分數值成反比例關系。在比例中,比的前項一定,比的後項與比值成反比例關系。如果再把總數與份數關系具體化為:在購物問題中,總價一定,單價和數量成反比例關系。在行程問題中,路程一定,速度和時間成反比例關系。在做工問題中,工作總量一定,工作效率和工作時間成反比例關系。如果兩種量成反比例,那麼一種量的任意兩個數的比,等於另一種量的兩個對應數的反比。如,加工零件的總數一定,是600個。如果每小時加工10個,60個小時完成任務。如果每小時加工20個,30個小時完成任務。每小時加工數量的比1∶2,與它相對應的完成時間比是2∶1。2∶1是1∶2的反比。 教學反比例的意義採用類比逆向推理法。即,教學開始,首先由學生根據正比例的意義,直接寫出反比例的意義:兩種相關聯的量,一種量變化,另一種量也隨著變化。這兩種量中相對應的兩個數的乘積一定
再由學生根據自己寫出的反比例的意義,舉出實例,加以驗證。之後,進一步理解反比例的意義。
正、反比例之間的相互轉化:當正比例中的x值(自變數的值),轉化為它的倒數時,由正比例轉化為反比例;當反比例中的x值(自變數的值)也轉化為它的倒數時,由反比例轉化為正比例。

㈩ 數與代數課程包括哪些方面的內容

數與代數的內容在義務教育階段的數學課程中佔有重要地位,有著重要的教育價值。與傳統的中小學數學的有關部分相比,《標准》對於數與代數這一學習領域,無論從目標還是內容、結構以致教學活動等方面都有了比較大的變化。理解九年義務教育數學課程中"數與代數"部分的教育價值,設計思路,內容和安排以及教學方法的特點等,對於有效地實施和貫徹《標准》是非常重要的。
數與代數的內容在傳統中小學數學中佔有很大的比重,長期以來,積累了許多教學經驗。但與時代的要求相比,按照新的教育理念來看,存在著許多問題。例如,過分追求科學性和系統性,內容龐雜甚至顯得繁瑣臃腫;過分的追求"形式化",忽視與生活實際的聯系,課程中充斥著繁瑣的計算和推導,但是學生不理解問題的本質,看不到數學的用處,體會不到數學的價值,更不會用學到的知識去解決問題;以致許多學生感到數學"枯燥無味",失去對數學學習的興趣和信心。
在《標准》的研製過程中,對"數與代數"部分的改革作了認真的研究和思考,進一步明確了改革的方向,特別表現在:重視對數的意義的理解,培養學生的數感和符號感;淡化過分"形式化"和記憶的要求,重視在具體情境中去體驗、理解有關知識;注重過程,提倡在學習過程中學生的自主活動,提高發現規律,探求模式的能力;注重應用,加強對學生數學應用意識和解決實際問題能力的培養;提倡使用計算器,降低對運算復雜性和速度的要求,注重估算等。
1."數與代數"的教育價值

"\'數與代數\'的內容主要包括數與式、方程與不等式、函數,它們都是研究數量關系和變化規律的數學模型,可以幫助人們從數量關系的角度更准確、清晰地認識、描述和把握現實世界。"(《標准》第11頁)
這部分內容的教育價值主要體現在以下幾個方面:
(1)能使學生體會到數學與現實生活的緊密聯系,認識到數、符號是刻畫現實世界數量關系的重要語言,方程、不等式與函數是現實世界的數學模型,從而認識到數學是解決實際問題和進行交流的重要工具,從中感受到數學的價值,初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活和其他學科學習中的問題,增強應用意識,培養初步的應用能力。
(2)在"數與代數"的學習過程中,通過對現實世界中數量關系及其變化規律的探索,數的概念的建立、擴充以及數的運算,公式的建立和推導,方程的建立和求解,函數關系的探究等活動,有助於促進學生對數學學習的興趣,提高解決問題的能力和自信心,有利於培養學生初步的創新意識和發現能力。
(3)在"數與代數"中,不僅在知識中存在著對立和統一,例如正數與負數、加法與減法、乘方與開方、常量和變數、精確與近似等,而且在研究過程中也充滿了對立與統一,例如已知與未知、特殊與一般、具體與抽象、實踐與理論等。同時,在變數和函數的研究中充滿著運動、變化的思想,而且在"數與代數"的其他部分的研究中,從運動和變化的觀點來考察,也能使認識更加深刻。因此,這部分的學習,必將有助於培養學生的辯證唯物主義觀點,有利於學生用科學的觀點認識現實世界。
《標准》理念指導下的數與代數,將呈現給學生大量豐富的現實背景,並以學生已有的經驗為出發點,關注知識的形成過程、關注學生的學習興趣和自信心、關注學生探究和運用數學能力的發展,將改變"數與代數"這部分內容煩瑣乏味的狀況。
《標准》理念指導下的數與代數,將能夠發展學生的數感、符號感、估算意識以及把現實問題數學化的能力,並使之逐漸形成理性的力量。字元表示的思想,深刻地揭示和指明存在於一類問題中的共性和普遍性,把認識和推理提到一個更高的水平。代數式、表格、圖象等多種表示手段,不僅為數學表示和交流提供了有效的途徑,而且為解決問題提供了重要的工具。
方程、不等式中反映的數學模型的思想和方法,將幫助人們更准確、更清晰地認識和描述現實世界,並解決有關的實際問題。凡此種種,都將對培養學生良好的素質、促進學生的全面發展具有重要的價值。

熱點內容
武漢大學學生會輔導員寄語 發布:2021-03-16 21:44:16 瀏覽:612
七年級學生作文輔導學案 發布:2021-03-16 21:42:09 瀏覽:1
不屑弟高考成績 發布:2021-03-16 21:40:59 瀏覽:754
大學畢業證會有成績單 發布:2021-03-16 21:40:07 瀏覽:756
2017信陽學院輔導員招聘名單 發布:2021-03-16 21:40:02 瀏覽:800
查詢重慶2018中考成績查詢 發布:2021-03-16 21:39:58 瀏覽:21
結業考試成績怎麼查詢 發布:2021-03-16 21:28:40 瀏覽:679
14中醫醫師資格筆試考試成績查分 發布:2021-03-16 21:28:39 瀏覽:655
名著賞析課程標准 發布:2021-03-16 21:27:57 瀏覽:881
北京大學商業領袖高端培訓課程 發布:2021-03-16 21:27:41 瀏覽:919