当前位置:首页 » 考试成绩 » 考试成绩分布

考试成绩分布

发布时间: 2021-03-07 07:20:06

A. 要知道本次考试学生成绩在各分数段的分布情况,应选用______统计图;要知道明明这学期数学成绩的变化情况

要知道本次考试学生成绩在各分数段的分布情况,应选用扇形统计图;
要知道明明这学期数学成绩的变化情况,应选用折线统计图;
故答案为:扇形,折线.

B. 成绩正态分布的例子

(柳州三中 钟东华 )
记得大学毕业刚开始做老师的时候,对很多东西都不懂。其中就有一个在教学过程中遇到的问题使我困惑了很久。
期末考试刚刚把试卷改完,统计好分数,我就拿到班上去讲评了。由于是流水改试卷,难免就有几个同学是得59分的,于是问题就出来了。有一个同学刚好考得59分,于是他就跟我说:“老师,你给我加一分可以吗?”“为什么要给你加一分呢?”我疑惑道。“加上一分我能就及格了。”他渴望道。我解释道:“分数并没有加错啊!”“可是您看,我这里是可以得一分的,你没给呢?”“这种情况统一不给的。这都是流水改卷呢!”他哀求道:“过年了,加一分就能及格了,也好和父母交待,也好过个好年啊。”我拗不过他,只好说:“那好吧,我给你加一分吧,但是希望你下次能努力一点,考个好成绩。”
看着他欣喜若狂的样子,我真不知道自己所做的是对还是错。也许是我的私心,也许是为了对别的学生也公平一些,事后我把其它59分的都加到了60分,于是学生的成绩及格了,当然我所教科目的及格率也得到了相应的提高,这样我们皆大欢喜,同时也辟免了师生相互之间就试卷中能不能加这一分的争论。虽然我把学生的成绩加到了及格,但是我心理仍就期望他应该会吸取教训,从今往后认真学习,从而考出好的成绩。可是这也只是我的一厢情愿,随着下一次考试的到来,由于学习难度的加深,他非但没有前进一步,反而更退一步了,更别说有资格来求我加一分了。那些曾经加了一分的同学也没能达到我所期望的及格分数。这一出乎我期望之外的情况使我陷入了深深的困惑之中,加这一分对学生来说到底有没有用?
本来流水改试卷已经很科学了,但我却画蛇添足般的给59分的同学加上一分,从而违背了科学原理。这难道不值得我深思吗?
直到有一次我在教务处做学生考试成绩分析时,我才恍然大悟。
从统计学的角度来说,学生的考试成绩是近似服从正态分布的。正态分布是概率论中的最重要分布。大量的实践与理论分析均表明,大多数随机变量均服从或近似服从正态分布。如测量的误差,学生的考试成绩;人的身高与体重;产品的质量数据,投资的收益率等等均可认为服从正态分布。正态分布的随机变量应用范围之广, 其在数理统计学中占有极其重要的地位,可以说任何一个随机变量不可能与之相比。现今仍在经常使用的许多统计方法,就是建立在“所研究的量具有或近似地具有正态分布”这个假定的基础上,而经验和理论(概率论中所谓“中心极限定理”)都表明这个假定的现实性。现实世界中许多现象看起来是杂乱无章的,但在纷乱中却又有一种秩序存在。研究表明,若影响某一数量指标的随机因素很多,而每一种因素所起的作用又不太大,在理论上可以证明,该数量指标是服从正态分布的。因此我们可以得出结论,由于学生的考试成绩是近似服从正态分布的,所以存在59分是很正常的,如果没有则不正常了。
我们来看这样一个例子。期考语文的“正态分布曲线”(Normal Distribution Curve):
图中红色的光滑曲线是由该次语文考试的平均分和标准方差所决定的正态分布曲线,而柱状图部分则是该次考试的实际人数分布(由于EXCEL电子表格的强大计算能力,我们可以计算出每一分数段的实际人数)。语文满分150分,90分算及格(横坐标的分数段部分是从0分到150分进行统计,共有151个单位)。通过图中的柱状图分布来分析,我们完全可以看出89分这一格人数完全为空,90分这一格的人数飚得老高,可以看出89分的人数全部都跑到90分的人数了。通常来说,某一分数段的人数为空,是很正常的,但是它邻近的这一分数段却升得老高,这就不正常了,就说明有人为的改动了。所以我们要严格统计学生的成绩,实事求是的分析学生的成绩情况,从而才能找出教学中所存在的原因。这样才能制定出下一步的教学改进计划,为进一步改善学生的知识结构做好准备。通过学生的考试成绩的正态分布图,我们可以分析出学生成绩是不是存在着两极分化(两头大的情况)、或者通过了解学生成绩的分布状态,为下一步制定相应的教学策略做好准备等等。所以,从统计学的角度来说,我确实不应该给学生加这一分。
从学生的角度来说,学生的个体差异性也决定了“加一分”不能成为一种普遍使用的策略。给学生“加一分”,从表面上看,是期望通过给学生一个及格的分数来促进学生积极地去学习,实际上正是由于这一行为所蕴含的对学生的尊重与信任,从而真正的激活了学生学习的主体精神,是师生之间的一种积极的情感效应。如果没有真正激活学生学习的积极性,而只是为了满足学生心理上的某种特殊需求,那对学生的学习是毫无益处的。对于一个上进心强的,渴望取得好成绩的学生,这一策略可能很有效,能够激励他奋起学习,但是对于一个进取心不强,考试只在乎分数而不在乎知识掌握的学生,给他加再多的分数,恐怕也是爱莫能助。而且这种策略面向某个特殊个体时,有针对性地随机使用,可能效果颇佳;如果扩大为面向全体,频繁地使用,效果就会逐渐降低,最终变为一种让学生毫无感觉的、形式化的东西。因此,给学生“加一分”,这只能是一种随机性的“教育机智”,而不能作为一种“教育机制”来普遍使用。
当我再次遇到这种情况时,我会微笑着鼓励他:“只要你认真、努力地学习,下次肯定能及格。”因为我知道这一分所蕴含的道理,我再也不能轻易的给他加这一分。我只能在心里期待着他能够幡然醒悟,通过自己真正的努力来争取这一分,而不是再拿这一分来自欺欺人。

C. 考试成绩的分布一定是正态分布吗

按正态分布下来这个人的成绩有可能就达不到60分了,如果是最后一名的话,他挂科的危险很大了~可以先去找老师说说情

D. 统计学中考试成绩数据分布集中好还是离散好

不太明白问题的诉求是什么。如果是成绩的分布情况的话,集中度高说明大家的分数都比较接近,集中分布在相近的区间;离散的话就是成绩分散区间较广,会有超低分,也有超高分

E. 国考笔试成绩分布

国考分值分布有三种情况: 1、平均分布。每个题的分值都是一样的。 2、每回个题型的分值不一样答。根据题目的难易程度来定,比如数学运算普遍感觉难一些,分值就高一些,类比推理相对容易一些,分值就略低一些。这种情况通常是考前就已经确定了的。 3、考后再定分值。先有个基础的方案,然后根据大家的做题情况适当进行调整,比如今年国考类比推理很奇葩,大家普遍做的很差,那么分值就略调高一点,数学大家都做的很好,分值就略调低一点。相对来说,第三种情况会更加合理一些。如果是前两种情况,没必要藏着捏着,可以直接在试卷上进行标明,更显公开公平!所以第三种的可能性更大。根据多年的经验,通常确定的行测分值安排表如下:题型分值常识判断 0.5/个言语理解 0.6-0.8/个判断推理 0.6-0.8/个 1/个资料分析1/个

F. Excel如何统计各分数段学生考试成绩分布情况

亲,问得太笼统,所以只能举例作答。

如下图,选中F2:F5,然后在公式编辑栏粘贴这个版公式:

=FREQUENCY(B2:B11,D2:D4)

这是权多单元格数组公式,粘贴公式后,千万不要按回车退出,而要按“Ctrl+Shift+回车”退出

G. 急急急!!!考试成绩一般服从什么分布

正态分布

H. 1. 想要展示一个班级某门课程期末考试成绩分布情况,最适 合统计图是什么。(6

根据统计图的特点,知
本班数学考试各个分数段人数占班级总人数的百分比,应选用扇形统计图,
故选:B.

I. 考试概况:今年各分数段人数分布,及a、b、c、d等各分数段概况

由分析可知:班主任要统计本班期末考试语文、数学成绩中各分数段的人数情况,应制作复式统计图; 故选:B.

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919