分散控制系统课程设计
Ⅰ 分散控制系统有什么作用
当大量现场信息由智能仪表或通过现场总线直接进入计算机控制系统后,存在着计算机内部应用程序对现场信息的共享与交互问题。由于缺乏统一的连接标准,工控软件往往需要为硬件设备开发专用的驱动程序。这样一旦硬件设备升级换代,就需要对相应的驱动程序进行更改,增加了系统的维护成本。即使计算机中的SCADA有独立的驱动程序,但一般也不允许同时访问相同的设备,否则很容易造成系统崩溃。可见,现场控制层作为企业整个信息系统的底层部分,必然需要与过程管理层和经营决策层进行集成,这样也存在着监控计算机如何与其它计算机进行信息沟通和传递的问题。由于控制系统往往是不同厂商开发的专用系统,相互之间兼容性差,与高层的商业管理软件之间又缺乏有效的通信接口,因此通信规范问题成为了制约控制系统突破“信息孤岛”的瓶颈。
OPC(OLE for Process Control)的出现,建立了一套符合工业控制要求的通信接口规范,使控制软件可以高效、稳定地对硬件设备进行数据存取操作,应用软件之间也可以灵活地进行信息交互,极大提高了控制系统的互操作性和适应性
从软件的角度来说,OPC可以看成是一个“软件总线”的标准。首先,它提供了不同应用程序间(甚至可以是通过网络连接起来的不同工作站上的应用程序之间)实现实时数据传输的通道标准;其次,它还针对过程控制的需要定义了在通道中进行传输和交换的格式。OPC标准的体系结构为客户/服务器模式,即将软件分为OPC服务器和OPC 客户。OPC服务器提供必要的OPC数据访问标准接口;OPC客户通过该标准接口来访问OPC数据。
运用OPC标准开发的软件由于都基于共同的数据及接口标准,因此相互之间具有很强的通用性。这在工业控制领域中,具有十分现实的意义。OPC服务器可由不同供应商提供,其代码决定了服务器访问物理设备的方式、数据处理等细节。但这些对OPC客户程序来说都是透明的,只需要遵循相同的规范或方法就能读取服务器中的数据。同样,软件供应商则只需将自己的软件加上OPC接口,即能从OPC服务器中取得数据,而不需关心底层的细节。通过OPC接口,OPC客户程序可以和一个或多个不同的OPC服务器连接。如图3.4,同时一个OPC服务器也可以与多个客户程序相连,形成多对多的关系。任何支持OPC的产品都可以实现与系统的无缝集成。由于OPC技术基于DCOM,所以客户程序和服务器可以分布在不同的主机上,形成网络化的监控系统。
OPC技术的发展和应用,无论供应商还是最终用户都可以从中得到巨大的益处。首先,OPC技术把硬件和应用软件有效地分离开,硬件厂商只需要提供一套软件组件,所有OPC客户程序都可以使用这些组件,无需重复开发驱动程序。一旦硬件升级,只需修改OPC服务器端I/O接口部分,无需改动客户端程序。其次,工控软件只要开发一套OPC接口就可采用统一的方式对不同硬件厂商的设备进行存取操作。这样,软硬件厂商可以专注于各自的核心部分,而不是兼容问题。
对于最终用户而言,由于无需担心互操作性,在选择和更换软硬件时有了更多的余地,使异构计算机系统集成将变得很简单。用户可以将重点放在整个系统的功能及应用上,这也意味着成本的降低。此外,OPC组件的使用也十分方便,用户只需进行简单的组态即可。
OPC服务器在底层控制系统中采用统一的标准,实现了应用程序与现场设备的有效连接,发挥着重要的桥梁作用,同时也促进了企业现场控制层和生产过程管理层、经营决策层的集成。
Ⅱ 什么叫分散控制系统它有什么特点
分散控制系统又来称总体分源散型控制系统,它是以微处理机为核心的分散型直接控制装置。它的控制功能分散(以微处理机为中心构成子系统),管理集中(用计算机管理)。它与集中控制系统比较有以下特点:
1、可靠性高(即危险分散)。以微处理机为核心的微型机比中小型计算机的可靠性高,即使一部分系统故障也不会影响全局,当管理计算机故障时,各子系统仍能进行独立的控制。
2、系统结构合理(即结构分散)。系统的输入、输出数据预先通过子系统处理或选择,数据传输量减小,减轻了微型机的负荷,提高了控制速度。
3、由于信息量减小,使编程简单,修改、变动都很方便。
4、由于控制功能分散,子系统可靠性提高,对管理计算机的要求可以降低,对微型机的要求也可以降低。
Ⅲ 电力自动控制中试述分散控制系统的分散概念与模拟系统的分散概念有什么区别
分散控制系统的分散概念是对集中型计算机控制系统而言的,即为了版避免上位计算机(权通常是小型计算机)结构的不安全而设计的多微机子系统(或基本控制系统),它能在上位计算机故障时,独立完成控制功能。
模拟系统的分散概念是指模拟控制仪表采用功能分离的组件结构,分离的目的是为了组成各种不同功能的控制回路,分离(或分散)的组件不能独立完成控制功能。
Ⅳ 锅炉燃烧控制系统课程设计太少了
工 配套公用工程中包括3 台快
装锅炉装置, 产汽能力分别为70TöH
(318M PA )。开车过程中为合成氨提供中压蒸
汽, 正常生产为尿素二氧化碳压缩机供汽。每台
快锅均有一套燃烧控制系统、联锁保护系统以
及汽包液位三冲量控制系统。
我们采用日本横河公司生产的CEN TUM
集散控制系统实现3 台快锅的燃烧控制及联锁
保护, 由计算机软件完成全部的控制与联锁, 具
有较高的可靠性、准确性和关联性, 带有事故记
忆和逻辑判断、智能化功能。它能替代操作人员
要进行的部分操作和紧急事故处理, 这里以A
炉为例介绍一下快锅燃烧控制系统。
2锅炉燃烧控制系统说明
如图2—1 所示, 本系统是以母管蒸汽压力
为主调, 以燃料气量和燃烧空气量为副调组成
的串级—比值调节系统, 以保证在各种燃烧负
荷下维持合适的燃料—空气比。
211通过控制锅炉的燃料气量来保证母管蒸
汽压力稳定
212锅炉加负荷时, 先加空气后加燃料气, 减
负荷时则先减燃料气后减空气
213增加了对燃料气流量的温压补正
3控制原理分析
311 控制功能设计
由母管蒸气压力P IC001 构成稳定母管蒸
气的主环, 根据实际压力与给定值的偏差, 计算
出应需要如何改变当前每台炉子的燃料气量和
空气量。由燃料气流量调节器F IC811 和空气
流量调节器F IC812 作为副环。
工艺上需要在克服蒸汽负荷扰动时有超前
滞后的作用, 即增加负荷时先加空气后加燃料
气; 减负荷时先减燃料气后减空气, 为了实现这
一目的, 设置了高选器FX0812 和低选器
FX0811。当系统处于稳定状态时, FX0811 和
FX0812 的两个输入信号相等, 一旦出现扰动,
P IC01A 的输出有了变化, 如果是增加的变化,
则只能通过高选器FX0812, 这个信号是代表
燃料气量, 可以通过RL 0812 乘以空ö燃比系数
变为需要的空气量去作F IC812 的外给定。
F IC812 调节系统确实使空气流量增加后, 即
F IC812 的测量值PV 增加, 把这个值经
RL 0811 除法器, 除以空ö燃比系数变成燃料气
量送到低选器FX0811, 低选器的另一路输入
信号是刚才已经增加的P IC01A 的输出, 这样
燃料气调节器F IC811 的给定增加了, 它就使
1997 年第2 期工业仪表与自动化装置·27·
图2—1
燃料气阀开大, 导致燃料气量加大, 这样就实现
了增加负荷时, 先加空气, 后加燃料气的目的。
如果系统出现扰动, 使P IC01A 的输出减少, 则
这个信号只能通过低选器FX0811 到F IC811
的外给定, 导致燃料气量减少后, 即F IC811 的
PV 值减少, 这个信号送到高选器FX0812。
FX0812 上另一路输入信号是已减少的P I2
CO 1A 的输出, 所以F IC811 的PV 值经过
FX0812 再经RL 0812 乘以空ö燃比系数换算成
空气量作为调节器F IC812 的外给定, 导致空
气量减少。实现了减负荷时, 先减燃料气后减空
气的目的。
312水汽快锅
水汽快锅有A、B、C3 台炉子, 但只有一
个母管压力仪表指示P IC001。因此, 我们从内
部设置了3 个P IC01A、P IC01B、P IC01C、P ID
调节仪表, 分别相当于A、B、C3 台炉的调节
器, 其测量值PV 仍是母管的压力, 3 个内部仪
·28· 工业仪表与自动化装置1997 年第2 期
表指示完全一样, 而在自动状态其3 个给定值
SV 又都等于母管压力P IC001 的SV 值, 且分
别有AU T 1MAN 两种状态, 但不需人为去切
换, 完全依靠SEQ 表实现, 操作人员只须给定
P IC001 的SV 即可。
313可以实现空ö燃比等比例控制
在某些情况下, 例如当燃料气发生变化时,
可以用空ö燃比给定控制器FL 0811 来改变空ö
燃比值, 从而达到附合生产操作要求的空气量
和燃料气量的比例。
314有一定的自保护能力
若空气量不足, 将会使燃料气在燃料室内
积聚, 则将危及安全, 这是不允许的。此调节系
统可以实现当空气量下降时, 会通过除法器
RL 0811 和低选器FX0811 及时减少燃料气量,
而当燃料量增加时会通过高选器FX0812 和乘
法器RL 0812 及增加空气量, 这样在上述情况
发生时, 不会使进入燃料室的燃料气过量, 起到
安全保护作用。
315燃料气的温度TI0880 和压力LPS816 对
燃料气量F I0811 进行T1P 补正
当压力和温度的测量信号正常时, 5 秒收
集一次数据, 参加温压补偿。一旦压力和温度测
量信号异常时, 就停止收集数据, 温压补偿采用
异常前的数据, 所以检查或校验压力和温度时,
不会影响温压补偿。
4安全保护措施
CEN TUM 集散型控制系统具有强大的反
馈控制、逻辑顺序控制及各种运算功能。我们在
软件设计时, 根据工艺要求, 灵活地把这些功能
有机地组合, 设置了许多安全保证措施。当测量
仪表故障或事故停车或误操作时, 调节回路会
自动切换, 并能自动开启ö关闭, 自动设定安全
值等, 而且各主要仪表均具有跟踪, 变化率限
幅、高低限报警、偏差报警、仪表故障诊断报警
和工艺操作范围限制提醒等功能, 并配有汉字
化的操作指导信息和声响、变色、闪光报警, 所
以对操作人员来说, 既简单又方便, 又安全可
靠。
411F I0811 和F IC811 联动打校险
功能: 一个打成校验, 另一个会自动的打成
校验。
一个解除校验, 另一个也会自动的解
除校验。
412当P IC01A 在自动状态时, 则执行顺控运
算式: 使SV(P IC01A) = SV(P IC001)
413当F IC811 和F IC812 均不在串级时, 则
使P IC01A 打手动。
且①空ö燃比仪表FL 0811 跟踪实际的空ö
燃比。
②P IC01A 的输出跟踪F IC811 的给定
值SV
414当F IC811 和F IC812 均在串级时, 则使
P IC01A 打自动。
且使SV(P IC01A) = SV(P ICOO1)
415①当F IC811 在串级且F IC812 输入开
路时, 则使F IC811 打自动, F IC812 打手
动。
②当F IC812 在串级且F IC811 输入开
路时, 则使F IC812 打自动, F IC811 打手
动。
416 当P IC01A 在自动, 若F IC811, F IC812
中有一者被切除串级, 则另一者也自动
脱除串级, 且P IC01A 打手动, CRT 报
井。
417当P IC01A 的正、负偏差异常时, 则使P ICO1A
打手动且CRT 报井。
418当F IC811 或F IC812 在串级时, 若实际
的空ö燃比PV(FL 0811) ≤110 时,
则使F IC811, F IC812 脱串级打成自动,
且CRT 报井。
419当P IC01A, P IC01B, P IC01C 均不在自动
时,
则使SV (P IC001) = PV (P IC001) —— 母
管压力给定值跟踪实际值。
4110当尿素CO2 压缩机跳车后, 则马上使3
(下转第22 页)
1997 年第2 期工业仪表与自动化装置·29·
案。
·“超时”再报警
有时, 报警出现需要系统或操作人员进行
确认处理, 但在设计的报警变化△死区, 报警状
态既未消除也未变得更糟。在这些报警量中有
一些情况是严重的, 足以再次引起运行人员的
注意。例如, 未超过跳闸值的磨煤机过载或风机
轴承温度高的运行工况, 产生过载和温度高报
警后, 报警值未产生进一步的变化, 处于一种
“休眠”状态, 但对于运行设备来说, 这种工况可
能对设备产生损坏, 必须及时进行维护处理。
解决这类情况的报警可采用“超时”再报警
的方法, 例如某报警点记录的时间超出了设定
的时间限值, 该报警点将作为新的报警点进行
报警。超时报警的设定时间通常为5~ 30 分钟,
长的可达几小时。但是注意这类报警不能频繁
出现, 使得运行人员感到厌烦。在具体使用时要
与电厂运行操作人员密切配合, 确定此类报警
点数和相应的设定时间。
3结论
火电厂分散控制系统是一非常复杂的控制
系统, 设计良好的DCS 报警管理系统是DCS
安全可靠运行的重要保证。DCS 系统所采用的
报警技术应在DCS 系统最初设计阶段予以考
虑, 通过在系统数据库中设置使这些报警技术
有效的数据结构, 在显示导向系统中设置有效
的搜索链表和有关的报警图标, 从而设计出有
效的DCS 报警管理系统。这是提高电厂运行安
全可靠的重要手段。
参考文献
1电力部规划设计总院1 火电厂分散控制系统
技术规范G—RK—95—51; 1995, 41
2PROCON TROL P system Survey1ABB Pow er
Generat ion 1995, 11.
3 A dvancde A larm ing Techno logy. MCS
MAX1000 Techno logy info rmat ion.
(上接第29 页)
台炉子的负荷减到最低, 且不停车。
即F IC811, F IC812 均打手动, 且MV
(F IC811) = 10% ,MV (F IC812) = 15%
4111当尿素CO 2 压缩机跳车后, 则使快锅3
台炉子停烧油。
5结束语
我们利用DCS 实现的工业锅炉燃烧控制
系统, 经过一年多的实际投用验证, 该系统具有
较强的自适应能力和抗干扰能力, 调节品质与
控制特性优良, 运行效果十分良好, 减少了仪表
故障引起的停车, 达到了节能降耗增加产量的
目的, 保证了我厂安全稳定长周期运行。
·22· 工业仪表与自动化装置
Ⅳ 集散控制系统与分散控制系统 区别
其实是一回事。
英文原名:DCS-Distributed Control System,直译的话即为分布式控制系内统或分散控制系统,只是其也有集中容操作管理的功能,所以一般我们用的都是意译:集散控制系统。
现在最新的潮流是FCS-Field Control System,即总线控制系统或现场控制系统,只是尚未成为主流。
Ⅵ 锅炉双冲量dcs控制系统课程设计
华能玉环电厂4×1000 MW超超临界直流炉机组
DCS控制系统设计之浅见
上海西屋控制系统有限公司(上海浦东 201206) 管宇群 吴山红 朱鼎宇
【摘 要】对华能玉环电厂新建4X1000MW 超超临界机组DCS 控制系统技术设计进行了介绍,皆在了解和掌握国外在超超临界机组DCS控制系统技术设计上的一些经验,为今后的超超临界机组DCS 控制系统技术设计提供借鉴。
【关键词】超超临界机组 分散控制系统 DCS 1000MW机组
华能玉环电厂一、二期工程为4×1000MW国产化超超临界燃煤机组。锅炉为哈尔滨锅炉厂引进日本三菱技术制造的超超临界参数变压运行直管水冷壁直流炉,单炉膛、一次中间再热、采用八角双切圆燃烧方式、平衡通风、固态排渣、全钢悬吊结构∏型锅炉、露天布置燃煤锅炉。锅炉最大连续蒸发量为2950 t/h、过热器出口压力为26.25MPa、过热器出口温度为605℃、再热蒸汽流量为2457 t/h、再热器出口温度为603℃。
锅炉运行方式:带基本负荷并参与调峰。锅炉采用无分隔墙的八角反向双火焰切圆燃烧方式。每台锅炉共设有48只直流燃烧器,燃烧器共分6层,每层设8只燃烧器,每层燃烧器由同一台磨煤机供给煤粉。锅炉采用二级点火方式:高能电火花点火器-主油枪-煤粉燃烧器。油燃烧器的总输入热量按30%B-MCR计算。
制粉系统型式:采用中速磨煤机冷一次风机正压直吹式制粉系统,每台炉配6台中速磨煤机,燃烧设计煤种时,5台运行,1台备用。
给水系统采用单元制。系统配2×3台50%容量的双列高压加热器。每列高加分别设给水大旁路。系统设置两台50%容量的汽动给水泵,一台25%BMCR容量、带液力耦合器的调速电动启动/备用给水泵。
汽机由上海汽轮机有限公司生产,超超临界、一次中间再热、单轴、四缸四排汽、双背压、凝汽式、八级回热抽汽。
汽轮机旁路系统:暂定30%容量高低压二级串联旁路。
汽轮机具有八级非调整抽汽。一、二、三级抽汽供三台高压加热器;四级抽汽供除氧器、给水泵驱动汽轮机和辅助蒸汽系统;五、六、七、八级抽汽分别向5号、6号、7号、8号低压加热器供汽。
给水、主蒸汽、再热蒸汽系统、循环水系统均为单元制。
机组的DCS系统采用上海西屋控制系统有限公司OVATION控制系统。其单元机组配有27对控制器、公用系统配有7对控制器。控制范围涵盖了数据采集系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)、锅炉安全监视系统(FSSS)、电气控制系统(ECS)及各公用系统的控制。
1 DCS系统控制设计
为保证发电厂安全、高效地运行,对于超临界直流锅炉而言,启动系统的控制及水燃比控制是有别于亚临界汽包炉的控制回路。本文将对这俩个控制回路的特点做一简要的分析,它是针对玉环电厂超超临界锅炉所设计的。
本锅炉为带有再循环泵的启动系统,具有启动时间短、锅炉启动灵活的优点。在启动过程中,水冷壁的最低流量为35%BMCR,利用再循环泵将再循环流量与给水混合后进入省煤器,避免热损失。从锅炉点火到蒸发量达3%BMCR这一阶段,储水箱水位迅速上升,利用分离器疏水阀将工质排往扩容器。随着蒸发量的不断增加,储水箱水位不断下降,再循环流量不断减少,给水泵流量却相应增加,直到锅炉转到干态运行,再循环泵停止。其启动系统的汽水流程图如图1。
1.1 启动系统分离器控制回路简述
1.1.1 喷射水流量控制
在湿态方式下,从主给水有一路水通过喷射水流量阀保持一定的喷射水流量以冷却BCP,通过该调节阀维持1~3%的喷水量。在干态运行期间,当喷射水流量阀关时,水从一并列的孔板流过以冷却BCP。经过温度修正的喷射水流量和设定值的偏差来调节喷射水流量阀开度。当BCP停时,喷射水流量阀强制关到0。
1.1.2 分离器水位控制
分离器水位控制回路根据分离器的水位给出分离器疏水阀A、B和C的开度。各个阀门的开启都正比于分离器水位。随着分离器水位的上升,先开A阀,再开B、C阀。随着分离器水位的升高,A阀首先开启。随着分离器水位的再升高,B、C阀第二个开启。
疏水阀A、B和C在湿态方式为锅炉循环泵出口调节阀的紧急备用,在干态方式为过热器喷水减温旁路调节阀的紧急备用。
当WDC的各出口阀关,疏水阀A、B和C强制关到0。
图1 启动系统的汽水流程图
1.1.3 过热器喷水减温旁路调节阀控制
在干态时,BCP停,从省煤器入口有一路水经BCP反流到过热器对BCP进行暖泵。在超临界状态时,分离器出口压力>120kg,此阀保持固定开度40%。在干态到超临界时分离器出口压力<120kg,根据分离器的水位给出过热器喷水减温旁路调节阀的开度。此阀仅在干态方式下才能开,在湿态方式下强制关到0。
1.1.4 再循环流量控制
汽水混合物进入分离器容器,蒸汽流向过热器,水流向储水箱。在负荷非常低时,水没有被蒸发而全部进入储水箱,然后利用一台循环泵把水打回到省煤器入口。改变循环流量可调节储水箱液位。在启动期间,水膨胀在储水箱里会造成很高的液位,靠两个排放阀的连续排放,排掉一些水。随着负荷的增加,更多的水转化成蒸汽,储水箱的液位将降低。这个过程通过减少循环流量来相互配合,直到液位低时水泵跳闸为止。在本生负荷点以上,所有水都转化成蒸汽。循环流量设定值为储水箱水位的函数,有三种设定值函数:
1.1.4.1 湿态方式下为正常设定值。
1.1.4.2 当锅炉点火时,会出现膨胀现象,分离器水位会先高再降低,通过降低设定值以减少分离器水位的快速下降。
1.1.4.3 当省煤器出口温度高,降低设定值,以增加给水流量,防止省煤器汽化。
当锅炉循环泵停,锅炉循环泵出口调节阀强制关到0。
启动系统分离器控制SAMA图如2。
1.2 水燃比控制回路简述
水/燃料比率(WFR)指令是通过下列方法发出的。
当锅炉处于湿态运行方式时,主蒸汽压力由燃料量控制(同汽包炉)。因此,在这种情况下,调整水/燃料比率指令来控制主蒸汽压力。
当锅炉处于干态运行方式时,水/燃料比率指令控制水分离器入口蒸汽的过热度,使主蒸汽温度控制始终处于最佳位置(也就是,当超出某一负荷时,在稳定状态条件下喷水),以快速响应温度扰动。另外,为了协助主蒸汽温度的控制,把每一部分的温度偏差加起来作为比例控制信号。上游温度偏差(也就是,分离器出口蒸汽温度,一级过热器出口温度)加在主蒸汽温度控制回路上作为前馈指令。
在图中有一TR功能块,它是根据三菱锅炉的具体保护要求来实现下列功能:
当过热器受热面金属温度过高时,在当前的水煤比基础上逐步下降至一定值,当现象消失后,再恢复正常。
当过热器受热面金属温度过高高时,在当前的水煤比基础上下降至一定值,当现象消失后,再恢复正常
当一过出口温度过高时,当前的水煤比直接降至最小值,当现象消失后,再恢复正常。
水燃比控制SAMA图如3。
图2 启动系统分离器控制SAMA图
图3 水燃比控制SAMA图
2 结束语
DCS在火电厂的普遍应用使机组的自动化水平明显的提高。提高DCS在1000MW超超临界机组的控制水平,完善的控制系统设计是机组安全运行的关键。完善和提高控制设计水平,使DCS在电厂的应用达到新的水平。
【作者简介】
管宇群 上海西屋控制系统有限公司高级工程师
吴山红 上海西屋控制系统有限公司高级工程师
朱鼎宇 上海西屋控制系统有限公司高级工程师
Ⅶ 分散控制系统的含义和特点是什么
分散控制系统又称总体分散型控制系统,它是以微处理机为核心的分散型内直接控制装置。它容的控制功能分散(以微处理机为中心构成子系统),管理集中(用计算机管理)。它与集中控制系统比较有以下特点:
1、可靠性高(即危险分散)。以微处理机为核心的微型机比中小型计算机的可靠性高,即使一部分系统故障也不会影响全局,当管理计算机故障时,各子系统仍能进行独立的控制。
2、系统结构合理(即结构分散)。系统的输入、输出数据预先通过子系统处理或选择,数据传输量减小,减轻了微型机的负荷,提高了控制速度。
3、由于信息量减小,使编程简单,修改、变动都很方便。
4、由于控制功能分散,子系统可靠性提高,对管理计算机的要求可以降低,对微型机的要求也可以降低。
Ⅷ 分散控制系统的分散概念与模拟系统的分散概念有什么区别
分散控制系统的分散概念是对集中型计算机控制系统而言的,即为了避免上位计算回机(通常是小型计算机答)结构的不安全而设计的多微机子系统(或基本控制系统),它能在上位计算机故障时,独立完成控制功能。
模拟系统的分散概念是指模拟控制仪表采用功能分离的组件结构,分离的目的是为了组成各种不同功能的控制回路,分离(或分散)的组件不能独立完成控制功能。