eda计数器课程设计
A. EDA课程设计五进制计数器的VHDL语言设计的源程序
随便编了一个,能通过仿真。
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity cnt5 is
port(clk,rst:in std_logic;
SEL:in std_logic_vector(1 downto 0);
data1_out,data2_out,data3_out:out std_logic_vector(6 downto 0));
end cnt5;
architecture arch of cnt5 is
signal count:integer range 0 to 9;
signal state:std_logic_vector(1 downto 0);
begin
process(clk,rst)
begin
if rst='1' then
state<="00";data1_out<="1111110";data2_out<="1111110";data3_out<="1111110";count<=0;
elsif clk'event and clk='1' then
case state is
when "00" =>
data1_out<="1111110";data2_out<="1111110";
if count=4 then count<=0; else count<=count+1;end if;
case SEL is
when "01" => state<="01";count<=0;
when "10" => state<="10";count<=1;
when "11" => state<="11";count<=5;
when others => null;
end case;
when "01" =>
data1_out<="1111110";data2_out<="0110000";
if count=8 then count<=0; else count<=count+2;end if;
case SEL is
when "00" => state<="00";count<=0;
when "10" => state<="10";count<=1;
when "11" => state<="11";count<=5;
when others => null;
end case;
when "10" =>
data1_out<="0110000";data2_out<="1111110";
if count=9 then count<=1; else count<=count+2;end if;
case SEL is
when "00" => state<="00";count<=0;
when "01" => state<="01";count<=0;
when "11" => state<="11";count<=5;
when others => null;
end case;
when "11" =>
data1_out<="0110000";data2_out<="0110000";
if count=1 then count<=5; else count<=count-1;end if;
case SEL is
when "00" => state<="00";count<=0;
when "01" => state<="01";count<=0;
when "10" => state<="10";count<=1;
when others => null;
end case;
when others => state <= "00";
end case;
case count is
when 0 => data3_out<="1111110";
when 1 => data3_out<="0110000";
when 2 => data3_out<="1101101";
when 3 => data3_out<="1111001";
when 4 => data3_out<="0110011";
when 5 => data3_out<="1011011";
when 6 => data3_out<="1011111";
when 7 => data3_out<="1110000";
when 8 => data3_out<="1111111";
when 9 => data3_out<="1111011";
when others => data3_out<="0000000";
end case;
end if;
end process;
end arch;
B. eda 课程设计 可控计数器的设计!不甚感激!急用
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY SHENGHAO IS
PORT(CLK:IN STD_LOGIC;
SEL:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
Y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END SHENGHAO;
ARCHITECTURE SH OF SHENGHAO IS
SIGNAL CNT,CNT1:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
PROCESS(CLK)
BEGIN
IF(CLK'EVENT AND CLK='1')THEN
CASE SEL IS
WHEN "000"=>IF(CNT="0100")THEN
CNT<="0000";
ELSE CNT<=CNT+1;
END IF;
Y<=CNT;
WHEN "001"=>IF(CNT="1000")THEN
CNT<="0000";
ELSE CNT<=CNT+2;
END IF;
Y<=CNT;
WHEN "010"=>IF(CNT="1001")THEN
CNT<="0001";
ELSE CNT<=CNT+2;
END IF;
Y<=CNT;
WHEN "011"=>IF(CNT="0001")THEN
CNT<="0101";
ELSE CNT<=CNT-1;
END IF;
Y<=CNT;
WHEN "100"=>IF(CNT1="0011")THEN
CNT1<="0000";
ELSE CNT1<=CNT1+1;
END IF;
IF(CNT="1001")THEN
CNT<="0000";
ELSE CNT<=CNT+CNT1;
END IF;
Y<=CNT;
WHEN "101"=>IF(CNT="1001")THEN
CNT<="0101";
ELSE CNT<=CNT+1;
END IF;
Y<=CNT;
WHEN "110"=>IF(CNT="1000")THEN
CNT<="0000";
ELSE CNT<=CNT+2;
END IF;
Y<=CNT;
WHEN "111"=>IF(CNT="0101")THEN
CNT<="1001";
ELSE CNT<=CNT-1;
END IF;
Y<=CNT;
WHEN OTHERS=>CNT<="1111";
END CASE;
END IF;
END PROCESS;
END SH;
C. EDA课程设计,用VHDL编程做出租车计费器
课程设计内容与要求
1,用开关按键表示脉冲,每个脉冲代表100米,10个脉冲1公里,每公里1.4元,能同步显示里程和费用;
2,低于2公里5元计费,高于2公里总费用=起步费用+(里程-2公里)*里程单价+
等候时间*等后单价;
3,等候时间大于2分钟,按每分钟1.3元计费;
4,可以设定起步价和里程单价。
一、设计原理与技术方法:
包括:电路工作原理分析与原理图、元器件选择与参数计算、电路调试方法与结果说明;
软件设计说明书与流程图、软件源程序代码、软件调试方法与运行结果说明。
根据设计要求,系统的输入信号clk,计价开始信号start,等待信号stop,里程脉冲信号fin。系统的输出信号有:总费用数C0—c3,行驶距离k0—k1,等待时间m0—m1等。系统有两个脉冲输入信号clk_750k,fin,其中clk_750k将根据设计要求分频成14hz,15hz和1hz分别作为公里计费和超时计费的脉冲。两个控制输入开关start,stop;控制过程为:start作为计费开始的开关,当start为高电平时,系统开始根据输入的情况计费。当有乘客上车并开始行驶时,fin脉冲到来,进行行驶计费,此时的stop需要置为0;如需停车等待,就把stop变为高电平,
并去除fin输入脉冲,进行等待计费;当乘客下车且不等待时,直接将start置为0,系统停止工作;价格开始归为起步价5.0元。
整个设计由分频模块,计量模块,计费模块,控制模块和显示模块五个部分组成。
其中计量模块是整个系统实现里程计数和时间计数的重要部分;控制模块是实现不同计费方式的选择部分,根据所设计的使能端选择是根据里程计费还是根据等待时间计费,同时设计通过分频模块产生不同频率的脉冲信号来实现系统的计费。计量模块采用1hz的驱动信号,计费模块采用14hz,13hz的驱动信号;计量模块每计数一次,计量模块就实现14次或者13次计数,即为实现计时的1.3元/min,计程时的1.4元/km的收费。组成框图如下所示:
1.百进制模块:
实现百米脉冲的驱动信号,元件框图如图3所示:
图3 百进制模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity jin is
port(start,clk2: in std_logic; --秒脉冲
a: out std_logic_vector(3 downto 0));
end jin;
architecture rt1 of jin is
signal count_1:std_logic_vector(3 downto 0);
begin
a<=count_1;
process(start,clk2)
begin
if(start='0')then
count_1<="0000";
elsif(clk2'event and clk2='1')then
if(count_1="0111")then
count_1<="0000";
else
count_1<=count_1+'1';
end if;
end if;
end process;
end rt1
2.计费模块
; 实现里程和等候时间的计费并输出到显示,元件框图4如下:
图4 计费模块框图
源程序如下:
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity jifei is
port(clk2:in std_logic; --计费驱动信号
start:in std_logic; --计费开始信号
c0,c1,c2,c3:buffer std_logic_vector(3 downto 0));
end jifei;
architecture rt1 of jifei is
begin
process(clk2,start)
begin
if start='0'then c3<="0000";c2<="0000";c1<="0101";c0<="0000"; --起步价5元
elsif clk2'event and clk2='1'then
if c0="1001" then c0<="0000";
if c1="1001" then c1<="0000";
if c2="1001" then c2<="0000";
if c3="1001" then c3<="0000";
else c3<=c3+1;
end if;
else c2<=c2+1;
end if;
else c1<=c1+1;
end if;
else c0<=c0+1;
end if;
end if;
end process;
end rt1;
3.公里模块
实现历程的计数和输出计费脉冲,元件框图5如下:
图5 公里模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity gongli is
port(clk1,start: in std_logic; --百米脉冲
k1,k2,k3,k4: out std_logic_vector(3 downto 0); --里程显示
temp2 : out std_logic);
end gongli;
architecture rt1 of gongli is
signal count_1: std_logic_vector(3 downto 0);
signal count_2: std_logic_vector(3 downto 0);
signal count_3: std_logic_vector(3 downto 0);
signal count_4: std_logic_vector(3 downto 0);
begin
k1<=count_1;
k2<=count_2;
k3<=count_3;
k4<=count_4;
process(start,clk1)
begin
if(start='0')then
count_1<="0000";
count_2<="0000";
count_3<="0000";
count_4<="0000"; ---公里清零
elsif(clk1'event and clk1='1')then
if(count_1="1001")then --公里计数器
count_1<="0000";count_2<=count_2+1;temp2<='1';
if(count_2="1001")then
count_2<="0000";count_3<=count_3+'1';
if(count_3="1001")then
count_3<="0000";count_4<=count_4+'1';
end if;
end if;
else
count_1<=count_1+'1';temp2<='0';
end if;
end if;
end process;
end rt1;
4.输出模块
实现所有数据的输出,元件框图6如下:
图6 输出模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity shuchu is
port(y: in std_logic_vector(3 downto 0);
e: out std_logic_vector(6 downto 0));
end shuchu;
architecture rt1of shuchu is
begin
process
begin
case y is
when"0000"=>e<="0111111";
when"0001"=>e<="0000110";
when"0010"=>e<="1011011";
when"0011"=>e<="1001111";
when"0100"=>e<="1100110";
when"0101"=>e<="1101101";
when"0110"=>e<="1111101";
when"0111"=>e<="0000111";
when"1000"=>e<="1111111";
when"1001"=>e<="1100111";
when others=>e<="0000000";
end case;
end process;
end rt1;
5.显示模块
实现所有数据的显示,元件框图7如下:
图7 显示模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity xianshi is
port(start: in std_logic;
a:in std_logic_vector(3 downto 0); --选择信号
c1,c2,c3,c4,out1,out2,out3,out4:in std_logic_vector(3 downto 0); --里程显示,时间显示输入
y:out std_logic_vector(3 downto 0)); --里程显示,时间显示输出
end xianshi;
architecture rt1 of xianshi is
begin
process
begin
if(start='0')then
y<="0000";
else case a is
when "0000"=> y<=c1 ;
when "0001"=> y<=c2 ;
when "0010"=> y<=c3 ;
when "0011"=> y<=c4 ;
when "0100"=> y<=out1 ;
when "0101"=> y<=out2;
when "0110"=> y<=out3 ;
when "0111"=> y<=out4;
when others =>y<= "0000";
end case;
end if;
end process;
end rt1;
6.dian模块
图8 dian模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity dian is
port(a: in std_logic_vector(3 downto 0);
e: out std_logic);
end dian;
architecture rt1 of dian is
begin
process
begin
case a is
when "0001"=>e<='1';
when "0101"=>e<='1';
when others=>e<='0';
end case;
end process;
end rt1;
三、中各个模块设计分析
系统总体顶层框图如下:
系统总体顶层框图
程序最终功能实现波形仿真
1. 分频模块
由于实验箱上没有14hz和13hz的整数倍时钟信号,因此采用频率较大的750khz进行分频,以近似得到14hz,13hz和1hz的时钟频率。通过以上三种不同频率的脉冲信号实行出租车行驶,等待两种情况下的不同计费。模块元件如下:
分频模块框图
源程序如下:
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity fenpin is
port(clk_750k:in std_logic; --系统时钟
clk_14:buffer std_logic; --14分频
clk_13:buffer std_logic; --13分频
clk_1 : buffer std_logic); --1分频
end fenpin ;
architecture rt1 of fenpin is
signal q_14:integer range 0 to 53570; --定义中间信号量
signal q_13:integer range 0 to 57691;
signal q_1:integer range 0 to 749999;
begin
process(clk_750k)
begin
If(clk_750k' event and clk_750k='1')then
If q_14=53570 then q_14<=0;clk_14<=not clk_14;
else q_14<=q_14+1;
end if; --得14hz频率信号
If q_13=57691 then q_13<=0;clk_13<=not clk_13;
else q_13<=q_13+1;
end if; --得13hz频率信号
If q_1=749999 then q_1<=0;clk_1<=not clk_1;
else q_1<=q_1+1;
end if; --得1hz频率信号
end if;
end process;
end rt1;
2. 计量模块
计量模块主要完成计时和计程功能。
计时部分:计算乘客的等待累积时间,当等待时间大于2min时,本模块中en1使能信号变为1;当clk1每来一个上升沿,计时器就自增1,计时器的量程为59min,满量程后自动归零。
计程部分:计算乘客所行驶的公里数,当行驶里程大于2km时,本模块中en0使能信号变为1;当clk每来一个上升沿,计程器就自增1,计程器的量程为99km,满量程后自动归零。
元件框图为:
计量模块框图
计量模块仿真波形为:
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity jiliang is
port(start:in std_logic; --计费开始信号
fin:in std_logic; --里程脉冲信号
stop:in std_logic; --行驶中途等待信号
clk1:in std_logic; --驱动脉冲
en1,en0:buffer std_logic; --计费单价使能信号
k1,k0:buffer std_logic_vector(3 downto 0); --行驶公里计数
m1,m0:buffer std_logic_vector(3 downto 0)); --等待时间计数
end jiliang;
architecture rt2 of jiliang is
signal w:integer range 0 to 59; --计时范围0~59
begin
process(clk1)
begin
if(clk1'event and clk1='1')then
if start='0' then
w<=0;en1<='0';en0<='0';m1<="0000";
m0<="0000";k1<="0000";k0<="0000";
elsif stop='1' then --计时开始信号
if w=59 then
w<=0;
else w<=w+1;
end if;
if m0="1001" then
m0<="0000";
if m1="0101" then
m1<="0000";
else m1<=m1+1;
end if;
else m0<=m0+1;
end if;
if stop='1' then en0<='0';
if m1&m0>"00000001" then en1<='1'; --若等待时间大于2min则en1置1
else en1<='0';
end if;
end if;
elsif fin='1' then --里程计数开始
if k0="1001" then k0<="0000";
if k1="1001" then k1<="0000"; --计程范围0~99
else k1<=k1+1;
end if;
else k0<=k0+1;
end if;
if stop='0' then
en1<='0';
if k1&k0>"00000001" then
en0<='1'; --若行使里程大于2km,则en0置1
else en0<='0';
end if;
end if;
end if;
end if;
end process;
end rt2;
3. 控制模块
本模块主要是通过计量模块产生的两个不同的输入使能信号en0,en1,对每个分频模块输出的14hz,13hz的脉冲进行选择输出的过程;本模块实现了双脉冲的二选一;最终目的为了计费模块中对行驶过程中不同的时段进行计价。
模块元件如下:
控制模块框图
控制模块仿真波形为:
源程序如下:
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity kong is
port(en0,en1:in std_logic; --使能选择信号
clk_in1:in std_logic; --14分频输入信号
clk_in2:in std_logic; --13分频输入信号
clk_out:out std_logic); --输出信号
end kong;
architecture rt3 of kong is
begin
process(en0,en1)
begin
if en0='1' then --实现二选一功能
clk_out<=clk_in1;
elsif en1='1' then
clk_out<=clk_in2;
end if;
end process;
end rt3;
4.计费模块
当计费信号start一直处于高电平即计费状态时,本模块根据控制模块选择出的信号从而对不同的单价时段进行计费。即行程在2km内,而且等待累计时间小于2min则为起步价5元;2km外以每公里1.4.元计费,等待累积时间超过2min则按每分钟1.3元计费。c0,c1,c2,c3分别表示费用的显示。
模块元件为:
计费模块框图
计费模块仿真波形为:
源程序如下:
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity jifei is
port(clk2:in std_logic; --计费驱动信号
start:in std_logic; --计费开始信号
c0,c1,c2,c3:buffer std_logic_vector(3 downto 0));
end jifei;
architecture rt4 of jifei is
begin
process(clk2,start)
begin
if start='0'then c3<="0000";c2<="0000";c1<="0101";c0<="0000"; --起步价5元
elsif clk2'event and clk2='1'then
if c0="1001" then c0<="0000";
if c1="1001" then c1<="0000";
if c2="1001" then c2<="0000";
if c3="1001" then c3<="0000"; --计价范围0~999.9
else c3<=c3+1;
end if;
else c2<=c2+1;
end if;
else c1<=c1+1;
end if;
else c0<=c0+1;
end if;
end if;
end process;
end rt4;
5.显示模块
显示模块完成计价,计时和计程数据显示。计费数据送入显示模块进行译码,最后送至以百元,十元,元,角为单位对应的数码管上显示。计时数据送入显示模块进行译码,最后送至以分为单位对应的数码管上显示。计程数据送入显示模块进行译码,最后送至以km为单位的数码管上显示。
模块元件为:
显示模块框图
源程序如下:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all; --定义库包
entity xianshi is --定义实体
port(
clk_scan:in std_logic; --扫描时钟信号端口设置
c3,c2,c1,c0:in std_logic_vector(3 downto 0); --总费用输入端口
k0,k1:in std_logic_vector(3 downto 0); --里程输入端口
m0,m1:in std_logic_vector(3 downto 0); --等待时间输入端口
sel:out std_logic_vector(2 downto 0); --控制数码管位选信号的扫描信号输出端口
led:out std_logic_vector(6 downto 0); --数码管的控制端口
led_dp:out std_logic --数码管的小数点输出端口
);
end xianshi;
architecture rt5 of xianshi is
signal an:std_logic_vector(6 downto 0); --数码显示管中间变量
signal shuju:std_logic_vector(3 downto 0); --选择输入端的中间变量
signal cnt:std_logic_vector(2 downto 0); --控制数码管的中间变量
signal xiaodian:std_logic; --小数点的中间变量
begin
process(clk_scan) --开始进程
begin
if clk_scan'event and clk_scan='1' then
cnt<=cnt+1; --每有一个扫描信号上升沿实现加1扫描
end if;
end process; --结束进程
process(cnt) --开始进程(选择扫描显示数码管)
begin
case cnt is --扫描时给每个数码管赋值
when "000"=>shuju<=c0;
when "001"=>shuju<=c1;
when "010"=>shuju<=c2;
when "011"=>shuju<=c3;
when "100"=>shuju<=k0;
when "101"=>shuju<=k1;
when "110"=>shuju<=m0;
when "111"=>shuju<=m1;
when others=> null;
end case;
if (cnt="001" or cnt="110")
then xiaodian<='1'; --在里程和总费用的个位处显示小数点
else xiaodian<='0';
end if;
end process; --结束进程
process(shuju) --开始进程(译码显示)
begin
case shuju is
when "0000"=>an<="0111111"; --0
when "0001"=>an<="0000110"; --1
when "0010"=>an<="1011011"; --2
when "0011"=>an<="1001111"; --3
when "0100"=>an<="1100110"; --4
when "0101"=>an<="1101101"; --5
when "0110"=>an<="1111101"; --6
when "0111"=>an<="0000111"; --7
when "1000"=>an<="1111111"; --8
when "1001"=>an<="1101111"; --9
when others=>null;
end case;
end process;
sel<=cnt;
led<=an;
led_dp<=xiaodian;
end rt5;
二、课程设计工作记录:
包括:设计步骤与时间安排、调试步骤与时间安排、课题完成结果说明
2.课题完成结果说明:
此计费器能实现起步价是5元;实现实验要求的1公里计费一次单价,行驶公里大于2km时每公里按1.4元计费并能显示里程和总共的费用。当行驶了6公里,等待了4分钟时,费用显示为15.8元。与计算公式总费用=起步费用+(里程-2公里)*里程单价+等候时间*等后单价;即15.8=5+(6-2)*1.4+4*1.3。实验结果与理论结果完全一致,实验设计成功。
D. EDA课程设计——数字电子钟
1、基本要求:能利用现有的硬件系统设计一个至少能显示分、秒的控制电路。分和秒均用两位数码管指示,并具有调时、复位功能;
2、扩展要求:能同时显示小时(两位数码管)并能调节小时功能;具有闹钟定时功能。
3、设计方法:采用模块化描述方法,可分为分频模块、调时控制模块、数码显示模块、复位等模块,每个模块既可以编辑成独立的HDL文件或GDF文件,也可以作为HDL程序中的一个进程模块,最后进行系统仿真加以验证,在此基础上下载到硬件上进行现场测试。
4、输入、输出端口描述:输入信号——时钟信号clk、复位信号clr、时间设置键set、时间上调键tup、时间下调键tdown;输出信号——扫描式七段数码管段选输出端led[7..0]、位选输出端ctrlbit[3..0]。
我来帮他解答
2011-6-1 17:06
满意回答
设计原理
计数时钟由模为60的秒计数器模块、模为60的分计数模块、模为24的小时计数器模块、指示灯与报警器的模块、分/小时设定模块及输出显示模块等组成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块的进位输出为小时计数器模块的进位输入。其中秒计数器模块中应有分钟的设定,分计数器模块中应有小时的设定。
内容
设计一个计数时钟,使其具有24小时计数功能。通过“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意引线插孔可设置小时和分钟的值,并具有整点报时的功能。
电路原理图
模块说明:计数时钟由60秒计数器模块XSECOND、60分计数器模块XMINUTE、24小时计数器模块XHOUR等六个模块构成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块中有小时的设定。通过SW1、SW2、SW3、SW4可设定小时和分钟的值,并具有整点报时的功能。
输入信号:SETMIN为分钟设置信号;SETHOUR为小时设置信号;RESET为全局复位信号;CLK为全局时钟信号;CKDSP为数码管动态扫描信号。
输出信号:SPEAK为蜂鸣器报时信号;LAMP[2..0]为指示灯信号;A~G为数码管七个段位信号;SS[2..0]为数码管段位译码控制信号。
说明与电路连线
指示灯信号LAMP2~LAMP0为独立扩展下载板上CPLD器件的第11、10、9脚,内部已连接并已锁定,无需外接连线。
蜂鸣器报时信号SPEAK为独立扩展下载板CPLD器件的第31脚,内部已连接并已锁定,无需外接连线。
拨码开关SW1~SW7内部已连接并已锁定,无需外接连线。
数码管七个段位信号A~G为独立扩展下载板上CPLD器件的第86、87、88、89、90、92、93脚,应接数码管段位引线接线组KPL_AH,从左到右依次对应的A、B、C、D、E、F、G引线插孔。
数码管段位译码控制信号SS0、SS1、SS2为独立扩展下载板上CPLD器件的第68、69、70脚,为数码管的位选扫描信号,分别接信号接线组DS1-8A(T)的SS0、SS1、SS2引线插孔(即在电源引线插孔组GND孔处)。
复位信号RESET为独立扩展下载板上CPLD器件的第71脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
小时设置信号SETHOUR为独立扩展下载板CPLD器件的第73脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
分钟设置信号SETMIN为独立扩展下载板上CPLD器件的第74脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
时钟信号CLK为独立扩展下载板上CPLD器件的183脚(即GCLK2),应接时钟信号接线组“CLOCK(T)”的“FRQ(21)”引线插孔。
数码管动态扫描信号CKDSP为独立扩展下载板上CPLD器件的79脚(即GCLK1),应接时钟信号接线组“CLOCK(T)”的“FRQ(11)”引线插孔。
参考源程序
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsecond is
port (
clk: in STD_LOGIC;
clkset: in STD_LOGIC;
setmin: in STD_LOGIC;
reset: in STD_LOGIC;
secout: out STD_LOGIC_VECTOR (6 downto 0);
enmin: out STD_LOGIC
);
end xsecond;
architecture xsecond_arch of xsecond is
signal sec : std_logic_vector(6 downto 0);
signal emin : std_logic;
signal sec1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,sec,emin,setmin,clkset)
begin
if reset='0' then
enmin<='0';
secout<="0000000";
sec1<='1';
else
sec1<='0';
secout<=sec;
if clkset='1' and clkset'event then
if setmin='0' then
enmin<='1';
else
enmin<=emin;
end if;
end if;
end if;
end process;
process(clk,sec1)
alias lcount : std_logic_vector(3 downto 0) is sec(3 downto 0);
alias hcount : std_logic_vector(2 downto 0) is sec(6 downto 4);
begin
if sec1='1' then
sec<="0000000";
else
if (clk='1' and clk'event) then
if lcount=9 then
lcount<="0000";
if hcount/=5 then
hcount<=hcount+1;
emin<='0';
else
hcount<="000";
emin<='1';
end if;
else
lcount<=lcount+1;
emin<='0';
end if;
end if;
end if;
end process;
end xsecond_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xminute is
port (
clkmin: in STD_LOGIC;
reset: in STD_LOGIC;
sethour: in STD_LOGIC;
clk: in STD_LOGIC;
minout: out STD_LOGIC_VECTOR (6 downto 0);
enhour: out STD_LOGIC
);
end xminute;
architecture xminute_arch of xminute is
signal min : std_logic_vector(6 downto 0);
signal ehour : std_logic;
signal min1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,clk,sethour,min,ehour)
begin
if reset='0' then
enhour<='0';
minout<="0000000";
min1<='0';
else
min1<='1';
minout<=min;
if clk='1' and clk'event then
if sethour='0' then
enhour<='1';
else
enhour<=ehour;
end if;
end if;
end if;
end process;
process(clkmin,min1)
alias lcountm : std_logic_vector(3 downto 0) is min(3 downto 0);
alias hcountm : std_logic_vector(2 downto 0) is min(6 downto 4);
begin
if min1='0' then
min<="0000000";
else
if (clkmin='1' and clkmin'event) then
if lcountm=9 then
lcountm<="0000";
if hcountm/=5 then
hcountm<=hcountm+1;
ehour<='0';
else
hcountm<="000";
ehour<='1';
end if;
else
lcountm<=lcountm+1;
ehour<='0';
end if;
end if;
end if;
end process;
end xminute_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xhour is
port (
clkhour: in STD_LOGIC;
reset: in STD_LOGIC;
hourout: out STD_LOGIC_VECTOR (5 downto 0)
);
end xhour;
architecture xhour_arch of xhour is
signal hour : std_logic_vector(5 downto 0);
begin
-- <<enter your statements here>>
process(reset,clkhour,hour)
alias lcount : std_logic_vector(3 downto 0) is hour(3 downto 0);
alias hcount : std_logic_vector(1 downto 0) is hour(5 downto 4);
begin
if reset='0' then
hourout<="000000";
hour<="000000";
else
if (clkhour='1' and clkhour'event) then
if lcount=9 then
lcount<="0000";
hcount<=hcount+1;
else
if hour="100011" then
hour<="000000";
else
lcount<=lcount+1;
end if;
end if;
end if;
hourout<=hour;
end if;
end process;
end xhour_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xalert is
port (
clk: in STD_LOGIC;
d_in: in STD_LOGIC_VECTOR (6 downto 0);
speak: out STD_LOGIC;
d_out: out STD_LOGIC_VECTOR (2 downto 0)
);
end xalert;
architecture xalert_arch of xalert is
type state is (s1,s2,s3,s4);
signal next_state,current_state : state;
begin
-- <<enter your statements here>>
process(clk,current_state,d_in)
begin
if d_in/="0000000" then
speak<='0';
next_state<=s1;
current_state<=s1;
d_out<="000";
else
if clk='1' and clk'event then
speak<='1';
current_state<=next_state;
end if;
case current_state is
when s1 =>
d_out<="000";
next_state<=s2;
when s2 =>
d_out<="001";
next_state<=s3;
when s3 =>
d_out<="010";
next_state<=s4;
when s4 =>
d_out<="100";
next_state<=s1;
when others =>
d_out<="000";
null;
end case;
end if;
end process;
end xalert_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsettime is
port (
hour: in STD_LOGIC_VECTOR (5 downto 0);
min: in STD_LOGIC_VECTOR (6 downto 0);
sec: in STD_LOGIC_VECTOR (6 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
sel: out STD_LOGIC_VECTOR (2 downto 0);
d_out: out STD_LOGIC_VECTOR (3 downto 0)
);
end xsettime;
architecture xsettime_arch of xsettime is
signal sel1 : std_logic_vector(2 downto 0);
begin
-- <<enter your statements here>>
process(clk,reset,sel1,hour,min,sec)
begin
if reset='0' then
sel<="000";
d_out<="0000";
sel1<="000";
else
if (clk='1' and clk'event) then
if sel1<5 then
sel1<=sel1+1;
else
sel1<="000";
end if;
end if;
sel<=sel1;
case sel1 is
when "000" =>
d_out(3)<='0';
d_out(2)<='0';
d_out(1)<=hour(5);
d_out(0)<=hour(4);
when "001" =>
d_out<=hour(3 downto 0);
when "010" =>
d_out(3)<='0';
d_out(2)<=min(6);
d_out(1)<=min(5);
d_out(0)<=min(4);
when "011" =>
d_out<=min(3 downto 0);
when "100" =>
d_out(3)<='0';
d_out(2)<=sec(6);
d_out(1)<=sec(5);
d_out(0)<=sec(4);
when "101" =>
d_out<=sec(3 downto 0);
when others =>
null;
end case;
end if;
end process;
end xsettime_arch;
library IEEE;
use IEEE.std_logic_1164.all;
entity xdeled is
port (
d_in: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC
);
end xdeled;
才五分啊,太少了吧
哥刚的
E. 急!!!EDA课程设计:32进制同步加法计数器设计的程序是怎么样的 最好是有详细的报告.··thanks
//Verilog Code
mole counter32(clk,rst,counter,co);
input clk;
input rst;
output [4:0] counter;
output co;
reg [4:0] counter;
always @(posedge clk) //sync reset
if(rst)
counter <= 5'b0;
else
counter <= counter + 1'b1;
assign co=&counter; //overflow flag
endmole
F. eda 课程设计 可控计数器的设计
和如同有人问起特认为他要求未全额太委屈凸起物我额为企业我惬意因为企业企业网
G. EDA课程设计报告
课程设计总结
通过本次实验用计算机操作的形式编辑计数器程序和绘制出了利用计版数器原权理的分频器原理图,了解了利用软件绘制原理图和编程的方法,以及用计算机形象的仿真计数器和分频器的波形,在实验中通过形象的方法结合图形进行分析把在书上学习的理论知识进行实践。不仅更好的理解和掌握了用软件设计图形和运行仿真的方法,也通过实验把理论知识转化为实际的图形加以理解,更好的理解和掌握了此方面的知识。为以后的实践积累了经验
H. 关于抢答器的EDA课程设计(完整的)
抢答器
通信081 李笑笑 082278
一、简要说明
在进行智力竞赛抢答题比赛时,在一定时间内,各参赛者考虑好答案后都想抢先答题。如果没有合适的设备,有时难以分清他们的先后,使主持人感到为难。为了使比赛能顺利进行,需要有一个能判断抢答先后的设备,我们将它称为智力竞赛抢答器。
二、设计要求
1.最多可容纳15名选手或15个代表队参加比赛,他们的编号分别为1到15,各用一个抢答按钮,其编号与参赛者的号码一一对应。此外,还有一个按钮给主持人用来清零,主持人清零后才可进行下一次抢答。
2.抢答器具有数据锁存功能,并将所锁存的数据用LED数码管显示出来。在主持人将抢答器清零后,若有参赛者按抢答按钮,数码管立即显示出最先动作的选手的编号,抢答器对参赛选手动作的先后有很强的分辨能力,即较他们动作的先后只相差几毫秒,抢答器也能分辨出来。数码管不显示后动作选手的编号,只显示先动作选手的编号,并保持到主持人清零为止。
3.在各抢答按钮为常态时,主持人可用清零按钮将数码管变为零状态,直至有人使用抢答按钮为止。抢答时间设为10秒。在10秒后若没有参赛者按抢答按钮,抢答按钮无效。并保持到主持人清零为止。
三、设计提示
1. 输入输出信号
输出显示的位扫描时钟信号可以作为键盘输入的检测扫描信号。10秒定时计数器的时钟信号可以选2Hz的时钟。复位信号用来使10秒定时器和键盘编码器清零。15个按键输入信号应进行编码。A—G数码管段驱动信号。SEG0,SEGl数码管位驱动信号。
2.系统功能
按下异步复位键,10秒定时器和键盘编码器清零。放开异步复位健后,启动定时器,并允许键盘编码器扫描信号输入端,如在10秒内发现有输入信号,将其编码输出,同时使定时器停止计时;否则,停止扫描编码和定时,直到再次按下异步复位健键。把16进制编码转换为十进制码,经译码后显示。
3.设计框图如图:
四、程序代码
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity answer is
port(
KEY_IN: in std_logic_vector(15 downto 1);
CLEAR: in std_logic;
SCANCLK: in std_logic;
CLK1S: in std_logic;
LED_OUT: out std_logic_vector(6 downto 0);
SCAN_OUT: out std_logic;
SOUND_OUT: out std_logic
);
end answer;
architecture rtl of answer is
signal KEY_CODE: integer range 0 to 15;
signal KEY_CODE_REG: integer range 0 to 15;
signal KEY_EN: std_logic;
signal NUM1: integer range 0 to 9;
signal NUM2: integer range 0 to 9;
signal KEY_EN1,KEY_EN2: std_logic;
signal KEY_IN1,KEY_IN2,KEY_INS: std_logic_vector(15 downto 1);
signal HEX: integer range 0 to 9;
signal TIME_CNT: std_logic_vector(3 downto 0);
begin
process(KEY_EN,KEY_IN,SCANCLK,CLEAR)
begin
if CLEAR = '0' then
KEY_CODE_REG<=0;
elsif SCANCLK'event and SCANCLK = '1' then
if KEY_CODE_REG = 0 then
KEY_CODE_REG<=KEY_CODE;
end if;
end if;
end process;
process(SCANCLK,CLEAR,KEY_IN)
begin
if SCANCLK'event and SCANCLK = '1' then
KEY_IN2 <= KEY_IN1;
KEY_IN1 <= KEY_IN;
end if;
end process;
KEY_INS<=not KEY_IN2 or KEY_IN1;
KEY_CODE<=0 when KEY_EN = '0' else
1 when KEY_INS(1)='0' else
2 when KEY_INS(2)='0' else
3 when KEY_INS(3)='0' else
4 when KEY_INS(4)='0' else
5 when KEY_INS(5)='0' else
6 when KEY_INS(6)='0' else
7 when KEY_INS(7)='0' else
8 when KEY_INS(8)='0' else
9 when KEY_INS(9)='0' else
10 when KEY_INS(10)='0' else
11 when KEY_INS(11)='0' else
12 when KEY_INS(12)='0' else
13 when KEY_INS(13)='0' else
14 when KEY_INS(14)='0' else
15 when KEY_INS(15)='0' else
0 ;
process(CLK1S,CLEAR,KEY_EN)
begin
if CLEAR = '0' then
TIME_CNT <= "0000";
elsif CLK1S'event and CLK1S = '1' then
if KEY_EN='1' then
TIME_CNT<=TIME_CNT + 1;
end if;
end if;
end process;
KEY_EN<='1' when KEY_CODE_REG = 0 and TIME_CNT<=9 else '0';
process(CLK1S,CLEAR,KEY_EN)
begin
if CLEAR = '0' then
KEY_EN1 <= '1';
KEY_EN2 <= '1';
elsif CLK1S'event and CLK1S = '1' then
KEY_EN2 <= KEY_EN1;
KEY_EN1 <= KEY_EN;
end if;
end process;
SOUND_OUT<=SCANCLK when KEY_EN1='0' and KEY_EN2='1' else '0';
with HEX select
LED_OUT<="0000110" when 1,
"1011011" when 2,
"1001111" when 3,
"1100110" when 4,
"1101101" when 5,
"1111101" when 6,
"0000111" when 7,
"1111111" when 8,
"1101111" when 9,
"0111111" when OTHERS;
HEX<= NUM1 when SCANCLK='0' else NUM2;
NUM2<=1 when KEY_CODE_REG>9 ELSE 0;
NUM1<=KEY_CODE_REG when KEY_CODE_REG<=9 ELSE KEY_CODE_REG-10;
SCAN_OUT <= SCANCLK;
end rtl;
I. 求EDA频率计数器课程设计报告
EDA技术是以大规模可编程逻辑器件为设计载体,以硬件语言为系统逻辑描述的主要方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件设计的电子系统到硬件系统的设计,最终形成集成电子系统或专用集成芯片的一门新技术。其设计的灵活性使得EDA技术得以快速发展和广泛应用。
本文以Max+PlusⅡ软件为设计平台,采用VHDL语言实现数字频率计的整体设计。
1 工作原理
众所周知,频率信号易于传输,抗干扰性强,可以获得较好的测量精度。因此,频率检测是电子测量领域最基本的测量之一。频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,即闸门时间为1 s。闸门时间可以根据需要取值,大于或小于1 s都可以。闸门时间越长,得到的频率值就越准确,但闸门时间越长,则每测一次频率的间隔就越长。闸门时间越短,测得的频率值刷新就越快,但测得的频率精度就受影响。一般取1 s作为闸门时间。
数字频率计的关键组成部分包括测频控制信号发生器、计数器、锁存器、译码驱动电路和显示电路,其原理框图如图1所示。
2 设计分析
2.1 测频控制信号发生器
测频控制信号发生器产生测量频率的控制时序,是设计频率计的关键。这里控制信号CLK取为1 Hz,2分频后就是一个脉宽为1 s的时钟信号FZXH,用来作为计数闸门信号。当FZXH为高电平时开始计数;在FZXH的下降沿,产生一个锁存信号SCXH,锁存数据后,还要在下次FZXH上升沿到来之前产生清零信号CLEAR,为下次计数做准备,CLEAR信号是上升沿有效。
2.2 计数器
计数器以待测信号FZXH作为时钟,在清零信号CLEAR到来时,异步清零;FZXH为高电平时开始计数。本文设计的计数器计数最大值是99 999 999。2.3 锁存器
当锁存信号SCXH上升沿到来时,将计数器的计数值锁存,这样可由外部的七段译码器译码并在数码管上显示。设置锁存器的好处是显示的数据稳定,不会由于周期性的清零信号而不断闪烁。锁存器的位数应跟计数器完全一样,均是32位。
2.4 译码驱动电路
本文数码管采用动态显示方式,每一个时刻只能有一个数码管点亮。数码管的位选信号电路是74LS138芯片,其8个输出分别接到8个数码管的位选;3个输入分别接到EPF10K10LC84-4的I/O引脚。
2.5 数码管显示
本文采用8个共阴极数码管来显示待测频率的数值,其显示范围从O~ 以下是数码管段选的程序:
2.6 程序
综合以上模块分析,可以得到如下程序:3 结 语
本文采用EDA设计方法,把数字频率计系统组建分解成若干个功能模块进行设计描述,选用Altera公司生产的FPGA产品FLEX10K系列的EPF10K10LC84-4芯片,下载适配后,便可以在数码管上显示出待测频率的数值。实验证明,其软件设计思想清晰,硬件电路简单,具有一定的实用性。