当前位置:首页 » 课程大全 » 认识线段课程标准

认识线段课程标准

发布时间: 2021-03-01 19:23:40

1. 数学课程标准的基本要求有什么变化

一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化

2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化:“三句”变“两句”、“6条”改“5条”

2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术

2011年版:数学课程——课程内容——教学活动——学习评价——信息技术

四、课程理念中新增加了一些提法

要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

五、“双基”变“四基”

2001年版的“双基”:基础知识、基本技能。

2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

六、四个领域名称的变化

2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化

更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。

八、实施建议的变化

不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。

一、“课程基本理念”的修改

1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”

二、“设计思路”的修改

1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改

1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。

2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。

3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

4.规范了课程目标的若干术语。并在学段目标中使用这些术语。

四、“课程内容”(原“内容标准”)的修改

1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容

▲在“数与代数”领域,删除了一些内容,例如:

①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)

②对有效数字的要求——“了解有效数字的概念”(实验稿P32)

③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)

▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:

①关于等腰梯形的相关要求(实验稿P39、P43)

②探索并了解圆与圆的位置关系(实验稿P39)

③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)

④关于镜面对称的要求(实验稿P41)

▲“统计与概率”部分删除的内容

极差、频数折线图等内容

(2)新增加的内容

▲“数与代数”中既有必学的内容,也有选学的内容

①知道|a|的含义(这里a表示有理数)

②最简二次根式和最简分式的概念

③能进行简单的整式乘法运算中增加了一次式与二次式相乘

④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等

⑤会利用待定系数法确定一次函数的解析表达式

以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:

*⑥解简单的三元一次方程组

*⑦了解一元二次方程的根与系数的关系

*⑧知道给定不共线三点的坐标可以确定一个二次函数

▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义

②了解平行于同一条直线的两条直线平行

③会按照边长的关系和角的大小对三角形进行分类

④了解并证明圆内接四边形的对角互补

⑤了解正多边形的概念及正多边形与圆的关系

⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形

下面的要求是选学内容:

*⑦了解平行线性质定理的证明

*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧

*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等

*⑩了解相似三角形判定定理的证明

(3)在要求上有变化的内容(略)

4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。

五、“实施建议”的修改

“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

六、“实例”的修改

增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

七、增加附录

将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。

2. 义务教育数学课程标准2011版的基本理念是什么课程总目标是什么

l在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理回念之前的文字之中答,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。l原课标: 数学课程—数学—数学学习—数学教学—评价—信息技术l修改后:数学课程—课程内容(新增)—教学活动(合并)—学习评价—信息技术。
总体目标:通过义务教育阶段的数学学习,学生能够:1、获得适应社会生活和进一步发展所必须的数学的基本知识、基本技能、基本思想、基本活动经验。2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现问题和提出问题的能力、分析问题和解决问题的能力。3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

3. 人教版小学数学课程标准去哪里找

人教版小学数学课程标准实验教材结构安排
1.“数与代数”结构安排 1
2.“量与计量”结构安排 4
3.“空间与图形”结构安排 5
4.“统计与概率”结构安排 6
5.“实践活动”结构安排 7
6.“数学思想方法”结构安排 8
7.“解决问题”结构安排 9

1.“数与代数”结构安排
年级 册数 单元 内容 单元说明
一 上 1 数一数 10以内数的直观认识
3 5以内数的认识和加减法 基数,序数,加减法各部分名称,有关0的加减
6 6~10的认识和加减 加、减,连加,连减,加减混合,10以内的加法与减法表
7 11~20各数的认识 加、减法各部分名称
9 20以内的进位加法 20以内进位加法表
下 2 20以内退位减 20以内退位减法表
4 100以内数的认识 整十数加减一位数
6 100以内加减(一) 整十相加减,两位加减一位,两位加减整十
二 上 2 100以内加减(二) 两位数加减,连加,连减,加减混合,加减估算
4 表内乘法(一) 2~6的乘法口诀,乘加、乘减两步式题
6 表内乘法(二) 7、8、9的乘法口诀,倍的认识,小九九表
下 1 表内除法(一) 用2~6的乘法口诀求商
4 表内除法(二) 用7、8、9的乘法口诀求商
解决问题
5 万以内数的认识 千、万以内数的认识
整千、整百数的加减
7 万以内加减(一) 几百几十加减,估算
三 上 2 万以内加减(二) 进位、退位,加减法验算
4 有余数的除法
6 多位数乘一位数 有关0的乘法
7 分数的初步认识 几分之一,几分之几,简单计算(分子不大于分母)
下 2 除数是一位数的除法 用乘法验算除法,补充0的除法
5 两位数乘两位数
7 小数的初步认识 简单加减(一位)
四 上 1 大数的认识 亿以内、亿以上
“四舍五入”P15
3 三位数乘两位数 速度、时间、路程的关系
5 除数是两位数的除法 商不变性质
下 1 四则运算 同级两步运算,两级三步运算,带小括号的运算,总结有关0的运算
3 运算定律与简便计算 运算定律与运算性质,简便计算
4 小数的意义和性质 意义,性质,小数点的移动引起数值的变化,求一个小数的近似数
6 小数的加减
五 上 1 小数乘法 两步计算,积的近似值,运算定律的推广
2 小数除法 商的近似值,循环小数
“进一法”、“去尾法”P33例12
4 简易方程 等式的两个性质
下 1 因数与倍数 因数和倍数,2、3、5倍数的特征,奇数和偶数、质数和合数
4 分数的意义和性质 分数与除法和关系,真、假、带分数,最大公因数与约分,最简分数,最小公倍数与通分,分小数互化
5 分数的加法和减法 同分母分数加减法,异分母分数加减法,分数加减混合运算
六 上 2 分数乘法 意义,计算方法,倒数的认识,四则混合运算
3 分数除法 意义,计算方法,比和比的应用,四则混合运算
5 百分数 意义和写法,百分数和分数、小数的互化,纳税、利率
下 1 负数
3 比例 比例的意义和性质,正比例和反比例,比例的应用

2.“量与计量”结构安排
年级 册数 单元 内容 单元说明
上 2 比一比 长短,高矮
一 8 认识钟表 整时,半时
下 5 认识人民币 进率,简单计算
7 认识时间 时与分的进率,几时几分
二 上 1 长度单位 厘米,米,进率
下 6 克和千克 包含进率
三 上 1 测量 毫米、分米、千米、吨
5 时、分、秒 认识秒,分与秒的进率,简单的时间计算
下 4 年,月,日 24时计时法
6 面积和面积单位,进率 长方形,正方形的面积
四 上 2 角的度量 直线、射线、角的分类,用量角器画角

五 上

六 上


3.“空间与图形”结构安排
年级 册数 单元 内容 单元说明
一 上 4 认识物体和图形 平面,立体,出现线段
下 1 位置 上下,左右,前后,位置(两维坐标)
3 图形的拼组 平面,立体
二 上 3 角的初步认识 角,直角,用三角板画直角
5 观察物体 正面,侧面,轴对称,镜像对称
下 3 图形与变换 锐角和钝角,平移和旋转
三 上 3 四边形 四边形,平行四边形
长方形和正方形的周长,长度的估计
下 1 位置与方向 8个方位的绝对性
四 上 2 角的度量 射线、直线、角、度及“°”
角的分类,用量角器画角
4 平行四边形和梯形 垂直与平行,平行四边形,梯形
下 2 位置与方向 8个方位的相对性
5 三角形 特性,分类,内角和,拼图
五 上 3 观察物体 从正、侧、上面观察
5 多边形面积 平、三、梯形,组合图形
下 1 图形的变换 轴对称,旋转
3 长方体和正方体 表面积,体积单位,体积,容积
六 上 1 位置 用数对表示位置
4 圆 认识圆,圆的周长,圆的面积
下 2 圆柱与圆锥 圆柱和圆锥的认识,圆柱的表面积,圆柱和圆锥的体积,

4.“统计与概率”结构安排
年级 册数 单元 内容 单元说明
一 上 渗透 形象、条形统计图,收集数据的方法 P83、P85出现
下 9 条形统计图 条形图中一格代表1
二 上 7 条形统计图(画“正”字) 条形图中一格代表2
下 8 复式统计表,条形图 条形图中一格代表5
三 上 8 可能性的大小 画“正”字
下 3 数据分析,平均数 出现横向条形统计图
四 上 6 复式条形统计图 横向,纵向
下 7 单式折线统计图
五 上 6 统计与可能性,中位数 事件发生的等可能性,游戏规则的公平性,求简单事件的概率
下 6 统计,众数 众数,复式折线统计图
六 上 6 扇形统计图 扇形统计图
下 4 统计 在根据统计图进行比较时要注意统一标准

5.“实践活动”结构安排
年级 册数 内容 页码 知识支撑
一 上 数学乐园 82~83 10的认识和加减法
我们的校园 114~115 20以内的进位加法
下 摆一摆,想一想 45 100以内数的认识
小小商店 86~87 100以内的加法和减法
人民币的简单计算
二 上 我长高了 36~37 米和厘米
看一看,摆一摆 92~93 观察物体,角和直角,长方形、正方形、三角形
下 剪一剪 46~47 平移和旋转,渗透轴对称
有多重 104~105 克和千克
三 上 填一填,说一说 67 时、分、秒
掷一掷 118~119 可能性,统计
下 制作年历 56~57 年、月、日
设计校园 106~107 解决问题
四 上 1亿有多大 33~34 大数的认识
你寄过贺卡吗 110~111 统计,平均数,估算
下 营养午餐 4849 统计表,解决问题
小管家 124 统计表
五 上 量一量,找规律 77 渗透函数思想
铺一铺 109 渗透密铺
下 粉刷围墙 58 统计表,表面积
打电话 132 结构图,树形图
六 上 确定起跑线 75~76 圆的概念和周长
合理存款 110~111 百分数
下 自行车里的数学 64~65 圆的周长,比例
节约用水 74~75 统计

6.“数学思想方法”结构安排
年级 册数 内容 单元说明
一 上 分类 单一分类
下 找规律 颜色、排列、数字
二 上 简单的排列组合,逻辑推理 组数
下 找规律 循环排列
三 上 排列组合 枚举,按顺序思考
下 集合,等量代换 包含与排除,等量代换
四 上 运筹学,对策论
下 植树问题,方阵问题
五 上 编码问题 分类,数字与编码
下 找次品
六 上 鸡兔同笼问题
下 抽屉原理

7.“解决问题”结构安排
年级 册数 单元 内容 单元说明
一 上 用数学 结合计算的教学安排应用数学解决问题

二 上
下 1 解决问题 两步(加减,乘加,乘减),出现小括号
4 解决问题 出现在“用7、8、9、的乘法口诀求商”中
三 上
下 8 解决问题 连乘、连除
四 上

五 上 2 小数除法 其中包含有解决问题
下 3 长方体和正方体 结合单元知识点解决问题
5 分数的加法和减法 结合单元知识点来解决问题
六 上 2 分数乘法 用分数乘法解决有关实际问题
3 分数除法 用分数除法解决有关实际问题
4 圆 结合圆的知识解决有关实际问题
5 百分数 用百分数解决有关实际问题
6 统计 结合统计知识解决有关实际问题
下 2 圆柱与圆锥 结合圆柱与圆锥的知识解决问题
3 比例 用比例知识解决问题

4. 小学数学的课程标准是什么

1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;

2、初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;

3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心

4、具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。

(4)认识线段课程标准扩展阅读:

义务教育阶段的数学学习目标:

1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

5. 如何写课程标准初中数学案例分析

初中数学教学典型案例分析

我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:

1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。

首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合

案例1:《勾股定理》一课的课堂教学

第一个环节:探索勾股定理的教学

师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?

A的面积

B的面积

C的面积

图1

图2

图3

图4

生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。

这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。

第二个环节:证明勾股定理的教学

教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力 (试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。

学生展示略

通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。

第三个环节:运用勾股定理的教学

师(出示右图):右图是由两个正方形

组成的图形,能否剪拼为一个面积不变的新

的正方形,若能,看谁剪的次数最少。

生(出示右图):可以剪拼成一个面积

不变的新的正方形,设原来的两个正方形的

边长分别是a、b,那么它们的面积和就是

a2+ b2,由于面积不变,所以新正方形的面积

应该是a2+ b2,所以只要是能剪出两个以a、b

为直角边的直角三角形,把它们重新拼成一个

边长为 a2+ b2 的正方形就行了。

问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。

第四个环节:挖掘勾股定理文化价值

师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。

新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。

2.课堂教学过程中的预设和生成的动态调整

案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:

例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放 个物体b?

a

a

b

c

图① 图②

a

c

?

图③

通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。

我讲解的设计思路是这样的:

一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):

图①:2a=c+b. 图②: a+b=c.

因此,2a=(a+b)+b.

可得:a=2b, c=3b .

所以,a+c = 5b.

答案应填5.

我自以为思维严密,有根有据。然而,在让学生展示自己的想法时,却出乎我的意料。

学生1这样思考的:

假设b=1,a=2,c=3.所以,a+c = 5,答案应填5.

学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整。

我先对学生1的方法进行积极地点评,肯定了这种思维方式在探索问题中的积极作用,当那几个同样做法的学生自信心溢于言表时,我随后提出这样一个问题:

“你怎么想到假设b=1, a=2, c=3?a、b、c是不是可以假设为任意的三个数?”

有的学生不假思索,马上回答:“可以是任意的三个数。”也有的学生持否定意见,大多数将信将疑,全体学生被这个问题吊足了胃口,我趁机点拨:

“验证一下吧。”

全班学生立刻开始思考,验证,大约有3分钟的时间,学生们开始回答这个问题:

“b=2,a=3,c=4时不行,不能满足图①、图②中的数量关系。”

“b=2,a=4,c=6时可以。结果也该填5.”

“b=3,a=6,c=9时可以,结果也一样。”

“b=4,a=8,c=12时可以,结果也一样。”

“我发现,只要a是b的2倍,c是b的3倍就能满足图①、图②中的数量关系,结果就一定是5.”

这时,学生的思维已经由特殊上升到一般了,也就是说在这个过程中,学生的归纳推理得到了训练,对特殊值法也有了更深的体会,用字母表示发现的规律,进而得到a=2b,c=3b .所以,a+c = 5b. 答案应填5.

我的目的还没有达到,继续抛出问题:

“我们列举了好多数据,发现了这个结论,你还能从图①、图②中的数量关系本身,寻找更简明的方法吗?”学生又陷入深深地思考中,当我巡视各小组中出现了“图①:2a=c+b. 图②: a+b=c.”时,我知道,学生的思维快与严密的逻辑推理接轨了。

我们是不是都有这样的感受,课堂教学设计兼具“现实性”与“可能性”的特征,这意味着课堂教学设计方案与教学实施过程的展开之间不是“建筑图纸”和“施工过程”的关系,即课堂教学过程不是简单地执行教学设计方案的过程。

在课堂教学展开之初,我们可能先选取一个起点切入教学过程,但随着教学的展开和师生之间、生生之间的多向互动,就会不断形成多个基于不同学生发展状态和教学推进过程的教学“新起点”。因此课堂教学设计的起点并不是唯一的,而是多元的;不是确定不变的,而是预设中生成的;不是按预设展开僵硬不变的,而是在动态中调整的。

3.一节数学习题课的思考

案例3:一位教师的习题课,内容是“特殊四边形”。

该教师设计了如下习题:

A

O

F

E

B

H

G

C

题1 (例题)顺次连接四边形各边的中点,所得的四边形是怎样的四边形?并证明你的结论。

题2 如右图所示,△ABC中,中线BE、CF

交于O, G、H分别是BO、CO的中点。

(1) 求证:FG∥EH;

(2) 求证:OF=CH.

O

F

A

E

C

B

D

题3 (拓展练习)当原四边形具有什么条件时,其中点四边形为矩形、菱形、正方形?

题4 (课外作业)如右图所示,

DE是△ABC的中位线,AF是边

BC上的中线,DE、AF相交于点O.

(1)求证:AF与DE互相平分;

(2)当△ABC具有什么条件时,AF = DE。

(3)当△ABC具有什么条件时,AF⊥DE。

F

G

E

H

D

C

B

A

教师先让学生思考第一题(例题)。教师引导学生画图、观察后,进入证明教学。

师:如图,由条件E、F、G、H

是各边的中点,可联想到三角形中位

线定理,所以连接BD,可得EH、

FG都平行且等于BD,所以EH平行

且等于FG,所以四边形EFGH是平行四边形,下面,请同学们写出证明过程。

只经过五六分钟,证明过程的教学就“顺利”完成了,学生也觉得不难。但让学生做题2,只有几个学生会做。题3对学生的困难更大,有的模仿例题,画图观察,但却得不到矩形等特殊的四边形;有的先画矩形,但矩形的顶点却不是原四边形各边的中点。

评课:本课习题的选择设计比较好,涵盖了三角形中位线定理及特殊四边形的性质与判定等数学知识。运用的主要方法有:(1)通过画图(实验)、观察、猜想、证明等活动,研究数学;(2)沟通条件与结论的联系,实现转化,添加辅助线;(3)由于习题具备了一定的开放性、解法的多样性,因此思维也要具有一定的深广度。

为什么学生仍然不会解题呢?学生基础较差是一个原因,在教学上有没有原因?我个人感觉,主要存在这样三个问题:

(1)学生思维没有形成。教师只讲怎么做,没有讲为什么这么做。教师把证明思路都说了出来,没有引导学生如何去分析,剥夺了学生思维空间;

(2)缺少数学思想、方法的归纳,没有揭示数学的本质。出现讲了这道题会做,换一道题不会做的状况;

(3)题3是动态的条件开放题,相对于题1是逆向思维,思维要求高,学生难把握,教师缺少必要的指导与点拨。

修正:根据上述分析,题1的教学设计可做如下改进:

首先,对于开始例题证明的教学,提出“序列化”思考题:

(1)平行四边形有哪些判定方法?

(2)本题能否直接证明EF∥FG , EH=FG? 在不能直接证明的情况下,通常考虑间接证明,即借助第三条线段分别把EH和FG的位置关系(平行)和数量关系联系起来,分析一下,那条线段具有这样的作用?

(3)由E、F、G、H是各边的中点,你能联想到什么数学知识?

(4)图中有没有现成的三角形及其中位线?如何构造?

设计意图:上述问题(1)激活知识;问题(2)暗示辅助线添加的必要性,渗透间接解决问题的思想方法;问题(3)、(4)引导学生发现辅助线的具体做法。

其次,证明完成后,教师可引导归纳:

我们把四边形ABCD称为原四边形,四边形EFGH称为中点四边形,得到结论:任意四边形的中点四边形是平行四边形;辅助线沟通了条件与结论的联系,实现了转化。原四边形的一条对角线沟通了中点四边形一组对边的位置和数量关系。这种沟通来源于原四边形的对角线同时又是以中点四边形的边为中位线的两个三角形的公共边,由此可感受到,起到这种沟通作用的往往是图形中的公共元素,因此,在证明中一定要关注这种公共元素。

然后,增设“过渡题”:原四边形具备什么条件时,其中点四边形为矩形?教师可点拨思考:

怎样的平行四边形是矩形?结合本题特点,你选择哪种方法?考虑一个直角,即中点四边形一组邻边的位置关系。一组邻边位置和数量关系的变化,原四边形两条对角线的位置和数量关系也随之变化。

根据修正后的教学设计换个班重上这节课,这是效果明显,大部分学生获得了解题的成功,几个题都出现了不同的证法。

启示:习题课教学,例题教学是关键。例题与习题的关系是纲目关系,纲举则目张。在例题教学中,教师要指导学生学会思维,揭示数学思想,归纳解题方法策略。可以尝试以下方法:

(1)激活、检索与题相关的数学知识。知识的激活、检索缘于题目信息,如由条件联想知识,由结论联系知识。知识的激活和检索标志着思维开始运作;

(2)在思维的障碍处启迪思维。思维源于问题,数学思维是隐性的心理活动,教师要设法采取一定的形式,凸显思维过程,如:设计相关的思考问题,分解题设障碍,启迪学生有效思维。

(3)及时归纳思想方法与解题策略。从方法论的角度考虑,数学习题教学,意义不在习题本身,数学思想方法、策略才是数学本质,习题仅是学习方法策略的载体,因此,方法策略的总结是很有必要的。题1的归纳总结使题2迎刃而解,题2是将题1的凸四边形ABCD变为凹四边形ABOC,两题的实质是一样的。学生在解题3时,试图模仿题1,这是解题策略问题。题1条件确定,可以通过画图、观察发现,题3必须通过推理发现后才可画出图形。

4. 注意课堂提问的艺术

案例1:一堂公开课——“相似三角形的性质”,为了了解学生对相似三角形判定的掌握情况,提出两个问题:

(1) 什么叫相似三角形?

(2) 相似三角形有哪几种判定方法?

听了学生流利、圆满的回答,教师满意地开始了新课教学。老师们对此有何评价?

C

B

A

事实上学生回答的只是一些浅层次记忆性知识,并没有表明他们是否真正理解。可以将提问这样设计:

如图,在△ABC和△A?B?C?中,

(1)已知∠A=∠A?,补充一个合适的

C?

A?

B?

条件 ,使△ABC∽△A?B?C?;

(2)已知AB/A?B?=BC/B?C?;补充一个合适的

条件 ,使△ABC∽△A?B?C?.

回答这样的问题,仅靠死记硬背是不行的,只有在真正掌握了相似三角形判定的基础上才能正确回答。这样的提问能起到反思的作用,学生的思维被激活,教学的有效性能够提高。

案例2:一堂讲菱形的判定定理(是讲对角线互相垂直平分的四边形是菱形)的课,教师画出图形后,有一段对话:

师:四边形ABCD中,AC与BD互相垂直平分吗?

B

C

A

D

生:是!

师:你怎么知道?

生:这是已知条件!

师:那么四边形ABCD是菱形吗?

生:是的!

师:能通过证三角形全等来证明结论吗?

生:能!

老师们感觉怎样?实际上,老师已经指明用全等三角形证明四边形的边相等,学生几乎不怎么思考就开始证明了,所谓的“导学”实质成了变相的“灌输”。虽从表面上看似热闹活跃,实则流于形式,无益于学生积极思维。可以这样修正一下提问的设计:

(1)菱形的判定已学过哪几种方法?(1.一组邻边相等的平行四边形是菱形;2.四边相等的四边形是菱形)

(2)两种方法都可以吗?证明边相等有什么方法?(1.全等三角形的性质;2.线段垂直平分线的性质)

(3)选择哪种方法更简捷?

案例3:“一元一次方程”的教学片段:

师:如何解方程3x-3=-6(x-1)?

生1:老师,我还没有开始计算,就看出来了,x =1.

师:光看不行,要按要求算出来才算对。

生2:先两边同时除以3,再……(被老师打断了)

师:你的想法是对的,但以后要注意,刚学新知识时,记住一定要按课本的格式和要求来解,这样才能打好基础。

老师们感觉怎样?这位教师提问时,把学生新颖的回答中途打断,只满足单一的标准答案,一味强调机械套用解题的一把步骤和“通法”。殊不知,这两名学生的回答的确富有创造性,可惜,这种偶尔闪现的创造性思维的火花不仅没有被呵护,反而被教师“标准的格式”轻易否定而窒息扼杀了。其实,学生的回答即使是错的,教师也要耐心倾听,并给与激励性评析,这样既可以帮助学生纠正错误认识,又可以激励学生积极思考,激发学生的求异思维,从而培养学生思维能力。

有的老师提问后留给学生思考时间过短,学生没有时间深入思考,结果问而不答或者答非所问;有的老师提问面过窄,多数学生成了陪衬,被冷落一旁,长期下去,被冷落的学生逐渐对提问失去兴趣,上课也不再听老师的,对学习失去动力。

关于课堂提问,我感觉要注意以下问题:

(1)提问要关注全体学生。提问内容设计要由易到难,由浅入深,要富有层次性,不同的问题要提问不同层次的学生;

(2)提问要有思考的价值,课堂提问要选择一个“最佳的智能高度”进行设问,是大多数学生“跳一跳,够得着”;

(3)提问的形式和方法要灵活多样。注意提问的角度转换,引导学生经历尝试、概括的过程,充分披露灵性,展示个性,让学生得到的是自己探究的成果,体验的是成功的快乐,使“冰冷的,无言的”数学知识通过“过程”变成“火热的思考”。

6. 小学数学新课程标准中图形的认识要求包括哪几方面

14/15大于0.9,也就是徒弟每分钟加工的多。所以徒弟快

如果满意,请在评价时一定选择“能解决问题”,并以五星作评价。如果还不满意,欢迎追问。谢谢合作

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919