当前位置:首页 » 课程大全 » 数学课程标准测量

数学课程标准测量

发布时间: 2021-03-06 14:32:40

㈠ .小学《数学课程标准》中的四个学习领域是什么

四个学习领域分别是:"数与代数""空间与图形""统计与概率""实践与综合应用"。

数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。

符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。

空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。

统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。

应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。

推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。

(1)数学课程标准测量扩展阅读

数学是人们对客观世界定性把握和定量刻画、.逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。

数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

参考资料来源:网络-全日制义务教育·数学课程标准

参考资料来源:网络-数学课程标准

㈡ 小学数学的课程标准是什么

1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;

2、初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;

3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心

4、具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。

(2)数学课程标准测量扩展阅读:

义务教育阶段的数学学习目标:

1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

㈢ 数学课程标准中关于估算的教学目标有哪些要求

一、《课标》对“估算”有什么新要求
课标修订版中加强了对“估计”以及“选择适当的单位”进行简单估算。如何理解“选择适当的单位”进行简单的估算?
例如:学校组织 987 名学生去公园游玩。如果公园的门票每张 8 元,带 8000 元钱够不够?
解决此题的适当方法是把 987 人看成 1000 人,所以适当的单位是“ 1000 人”。结合具体情境,选择适当的单位是第一学段估算的核心。在对大数进行估计的时候,选择合适的单位也很重要。教室到学校体育馆有多远,就应当选用米作单位。而从家到学校有多远,就要选择千米作单位。太阳到地球的距离就要用光年作单位。
第一学段的估算强调在具体的情境中选择合适的单位,刚才的例子是选择了 1000 人作单位。一般来说,估计教室的长度时,通常以“米”为单位;估计书本的长度时,通常以“厘米”为单位。也可以用身边熟悉的物体的长度为单位,如步长、臂长等。教学中,要让学生结合实际熟悉一些常见的计量单位真正了解其长短,大小和轻重等,并在头脑中建立起相应的表象。
二、如何把握估算教学的内容及其要求
(一)为什么教
? 估算在日常生活中有着广泛的应用。
? 有利于人们事先把握运算结果的范围,是发展学生数感的重要方面。
? 为判断计算器、口算和笔算结果是否合理提供了依据。
? 在具体情境中估算,有利于学生提高判断、选择的能力。
? 估算有利于培养学生做事的计划性。
? 估算对学生后续的数学学习有重要作用。
(二)教什么
关于“教什么”要依据新课标中的要求,展开教学。至少教学要涉及“估算方法”、“估算策略”。
估算方法:
①凑整的方法。 如凑成一个整十、整百的数。
②取一个中间数。 如32、37、 30 和39这四个数求和,这些数都很接近35,有的比35多一点,有的比35少一点,就取一个中间数35,直接用35×4,就大约地计算出了这几个数相加的结果。
③用特殊的数据特点进行估数。如126 × 8,就可以想到125 × 8,125的8倍,就得到1000。
④寻找区间。 也就是说叫寻找它的范围,也叫做去尾进一,去尾就是只看首位,那么只看首位的时候,估得的结果就是它的至少是多少;进一就是首位加一,假如说278,就看成了300,首位加一,这样就是它最多可能是多少,这样得到一个范围,就是寻找它的区间范围。
⑤ 大小协调。 两个数,一个数 往大了估,一个数往小了估,或者一个数估一个数不估。
⑥先估后调。
⑦利用乘法口诀凑数。 这种方法一般用于除法的估算,一般用除数乘一个整十数、整百数或整百整十数,如果乘积最接近被除数,则这个数就是除法估算的商。如 358÷6 ,用除数 6 乘整十数 60 ,其积 360 最接近被除数 358 ,那么整十数 60 即是所求的商。
(三)怎么教?
估算教学,不是单纯的教给学生记住一种估算的方法,而是通过我们的课堂教学,使
学生逐步地去理解估算的意义和价值,发展学生估算的意识。在这个过程当中,应当多增加一些学生的体验,不断地丰富学生这方面的经验,并逐步加以积累。
教学建议:
1. 整体把握估算教学,把估算意识的培养作为重要的教学目标
所谓整体把握估算教学,就是要把握自己所教估算教学部分的知识结构与地位,要知道自己所教学的估算知识部分在整个小学阶段处于什么位置 ? 对今后的估算学习能起到什么作用 ? 要在自己所教的一段达到什么样的目标 ? 这样一来在教学中就会做到游刃有余,心中有数。
学习估算的开始阶段,对学生来说可能有一定的难度,或许会影响一点教学进度或计算速度,这时老师不能为了赶进度而着急,应该给学生充分理解的空间和时间。要知道开头的 “ 慢 ” 正是为了不久之后的 “ 快 ” 和 “ 好 ” 。
在教学中 首先要考虑估算的教学目标,如果把目标仅仅定位在就教会凑整估算,或是见到 “ 大约 ” 就要估算,做一些机械的训练,可能就会给学生形成一种错误的定势。而估算教学中,首要重要的如何培养学生近似的意识,这是我们数学教学本身应该关注的问题,应该作为重要的教学目标来进行实施。
引导学生在问题情境的对比中,选择估算或精确计算,不断地积累这方面的经验。作为数学教师,要想办法搜集或者捕捉一些好的素材,在具体的问题情境当中让学生去感受,什么样的问题解决需要近似值,就是需要估算,哪些问题解决一定要算出精确值,比如“全家吃饭”饭费大约200元,就是估算。没有必要精确地计算。但作为饭店的收银员就需要精确计算,估算显然不行。
2. 要选好题目,提出好问题,让学生体会估算的意义和价值。
作为教师,在教学设计当中,首先要选好题目,提出有估算价值的问题。比如,三位数除以两位数,你估一估这道题,它的商是几位数?这个问题就有价值。另外,只有选好题目、提出好问题学生才能自觉体会到估算的价值,学生有了对估算价值这种体验以后,他的估算意识才能不断增强。
另外,鼓励学生利用估算来验证计算结果,养成好习惯。估算教学,要结合具体的问题情境让学生体会到估算的意义和价值,结合学生的实际,尤其是已有的知识水平和生活经验提出合适的问题,才能使得学生对估算的意义有深刻的体会,尤为重要的是,给学生充分的交流时间和空间,通过学生的交流让学生解释过算的过程。
面对不同的算式,学生有时用计算器计算,有时用精确笔算,结果对不对,特别是积的位数、商的位数,准确不准确,可以先用估算的方法,来确定一下它大致的取值范围,这样可以帮助学生来验证计算的结果。估算意识的培养,应该从点点滴滴做起,使学生逐步地养成一种习惯,形成这种良好的习惯以后,他会自觉地进行估算。
3. 鼓励方法多样化,重视交流、解释过程,让学生进行合理估算。
由于学生对于相关数学知识和技能的掌握情况及思维方式、水平不同,在估算中方法会多种多样。教师要积极鼓励学生估算方法多样化,应让学生充分交流,表达自己的想法,了解他人的算法,使学生体会到解决同一个问题可以有不同的方法,促进学生进行比较和优化。
估算结果是多样的,要关注估算结果是否合情合理。在估算教学中让学生交流估算方
法尤其重要,只要切合估算的目的或解决问题的需要就是好方法。因此不同的情境会选择不同的估算方法。
教师教学中要强化估算意识并结合教学内容作好估算示范。这种示范并不是包办,而是给予适当的引导,让学生在科学的范围内进行估算,同时对好的方法加以强调,进行合理的估算。
4. 做好对估算的有效评价
( 1 )对估算意识的评价
首先看一个案例,摘自 TIMSS 的测试:
保罗用 $5 去购买牛奶、面包和鸡蛋。当他到达商店时,发现这三种食品的价格如下图所示:

在下列哪种情况下使用估算比精确计算有意义?
A. 当保罗试图确认 $5 是否够用时;
B. 当销售员将每种食品的价钱输入收银机时;
C. 当保罗被告知应付多少钱时;
D. 当销售员数保罗所付的费用时。
这个题目设计的比较巧妙,它通过一个具体问题,考察学生能否在具体情境下对是否需要计算估算进行判断,也就是考察学生是否具备了一定的估算意识。此题对我们的最大启发是,估算意识也是可以考察的。因此在进行估算评价时,也要重视对估算意识的考察。
( 2 )对估算策略的评价
估算分为:一种是根据实际问题来进行估算,一种是脱离实际问题的情境,纯算式的进行估算。
? 根据实际问题,选择合理的估算策略,结果合理即为正确
学生只要能够解决实际问题,那这个估算就应该是合理的,这是针对着解决实际问题来说的。老师需要认识到,估算结果并不是与实际情况越接近就越好,只要合理即为正确。什么是合理,只要估算的结果,能够有效地解决问题就是合理。
? 纯试题的估算,只要结果落在一定的区间内,即为正确;但要根据不同年龄的学生的认知实际,给予针对性的评价
有一些题目,脱离了实际问题情境,属于纯算式的估算,在这种情况下,我们提出:不能简单地把估算结果是否与精确值最接近作为唯一的标准, 只要能够落在区间内,就视为是合理的。 这个区间,也就是它的取值范围。
同时,不同年龄的学生,要有不同的评价标准。如低年级学生刚刚接触估算,它的估算结果落在一个范围比较大的区间内,我们觉得就可以。高年级的学生已经有了一定的估算经验,就要引导他不断地进行再反思,再调整。举个例子来说: 78 × 365 积大约是多少,刚开始学习的时候,学生可能这样估 70 × 300 ,或者 80 × 300 ,或者 80 × 400 ,这样我们都可以视为是合理的。有了一定的计算技能以后,老师要引导学生不断地去进行反思,还可以估成 80 × 350 ,这时候的范围就比原来要小多了。
? 数学中比较重视估算结果是否落在了合适的数量级中
数量级也就是十、百、千,万……,换句话说就可以用 10 的多少次次方。如上面提出的 TIMSS 测试题中有一道题的备选答案很有意思,“史密斯家每星期的用水量是 6000 升 ,他家每年的用水量大约是多少升?”让学生从下面的答案进行选择。
A.30000 B.240000 C.300000 D.2400000 E.3000000
这正是在考察学生对数量级的了解。一年 52 个星期, 52 × 6000 ,结果为十万数量级,再加上肯定比三十万大,所以结果为 C 。
关于评价估算策略的问题,我们认为学生们估算的策略不同,只要是合理的,就应当
鼓励他们大胆地尝试,鼓励他们积极解释自己的观点,交流自己的看法。在这个过程当中,肯定会有很多有价值的东西在课堂中涌现出来,教师要小心翼翼地去呵护住学生们的这份探究的精神,不要轻易地用一两句话就否定一种方法。教师不要急于给予评判,给孩子一种宽松的氛围,让孩子不断地学会调整,不断地学会反思,提升孩子这种判断的能力。
问题四:如何依托现实情境,帮助学生理解常见的量
一、《课标》中对“常见的量”的要求是什么
在小学阶段“常见的量”基本在第一学段出现,主要有货币单位、时间单位和重量单位。《课程标准修订版》中这一部分内容并没有太大的变化。而在以往的教学中,一些教师对于《课程标准》中“理解常见的量”的具体要求,落实得还不够到位。对这一部分内容的教学,有的教师仅仅停留在让学生能够认识这些常见的量,并能够进行单位间的简单换算。那么针对这一问题,我们在课堂教学中应如何准确的落实“理解常见的量”这一具体目标呢?
二、如何帮助学生理解常见的量
(一)依托现实生活情境, 帮助学生理解常见的量。
数学课程标准中提倡让学生在生活情境中感受数学。北京市宣武师范附属第一小学耿爽老师上的《克和千克》,和北京小学走读部朱洁老师上的《认识时间》,都能够依托现实生活情境,帮助学生体现和理解常见的量。
在《克和千克》一课中 耿 老师注重依托现实生活情境,从学生熟悉的生活情境引入学习(从超市中买回的各种商品及生活中常见的与克和千克有关的情境),揭示本节课的学习内容,这样的引入能较好的 激发学生兴趣,同时给孩子发现数学问题的机会,也让学生感受到“克和千克”与日常生活的密切联系。
在《认识时间》一课中,朱老师将认识时间与学生在学校的作息时间相结合,这样就能够调动学生已有的、熟悉的生活经验,帮助他们认识钟表,理解常见的时间单位。
(二)依托现实活动情境, 帮助学生理解常见的量。
实践是最好的老师,只有学生们亲身经历了才会印象更深。因此 除了依托现实的生活情境,我们还可以依托现实的活动情境,帮助学生理解常见的量,建立正确的质量观念、时间观念等。
例如: “ 克和千克”的学习对于学生来说有一定困难,学生虽然在生活中接触过质量问题, 感知过轻和重,也曾经在商品标识上看见过千克、克,但多数学生都不知道它们是质量单位,不知道它们之间的进率 ,对于 1 克 或 1 千克 到底有多重,更是知之甚少。并且人们对质量的感受力并不强,同一物品掂与提、左手与右手、每人的承受力等,感受结果不同。同时物体的体积与物体的质量不一定是统一的,这些都给学生认识质量单位造成了困难。 宣武师范附属第一小学 的 耿 老师,在教学《克和千克》一课中,就为学生准备了大量的可操作的物品,为学生留出探究的空间,使学生能够通过掂一掂、称一称等活动,在感受 1 千克 和 1 克 的过程中,认识克和千克,同时帮助学生 建立正确的质量观念。
再如:时间单位的认识 对于学生来说是很抽象的概念,没有可视可触的形状与颜色,看不见、摸不着,让他们来掌握抽象的时间概念难度很大。所以发展孩子的时间感必须与日常生活的具体事件联系起来,使之有可以感知的具体内容。 在《认识时间》一课中,通过让学生体验 1 分钟能干什么?(拍球能拍多少下,跳绳能跳多少下,写字能写多少个),使学生体会、感受、理解 1 分钟有多长,帮助学生建立时间观念。
三、有关“常见的量”的教学建议
(一)争取家长的配合与支持,提前为学生学习“常见的量”积累生活经验。
由于“常见的量”这一部分内容对于第一学段的学生来说比较抽象,因此生活经验是否充足,将会影响到学生对这部分知识的学习。如果学生平时在生活中能经常接触到相关知识,他就能在这一方面学得很好,例如:学生平时有经常跟随家长购物的经验,学习人民币的相关知识就会轻松很多。反之,生活经验的缺失会使学生不易理解,造成学习上的困难。
(二)运用多种教学策略,将“常见的量”与现实生活有机结合。
教学中应注重运用多种教学策略,使“常见的量”的学习更贴近学生。要注重为学生提供多重学习素材,充分利用好学具,调动学生多种感官参与学习,为学生提供动手实践、自主探索、观察与思考、发现、表达的机会,激发学生的参与意识和积极性,让学生学会在实际中运用所学知识解决实际问题。

㈣ 新数学课程标准中如何合理设计与实施书面测验

教学课程中尊重幼儿合理设计浴室是付宏伟书面。撤点测验,书面测验就是考试。

㈤ 数学课程标准的基本要求有什么变化

一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化

2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化:“三句”变“两句”、“6条”改“5条”

2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术

2011年版:数学课程——课程内容——教学活动——学习评价——信息技术

四、课程理念中新增加了一些提法

要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

五、“双基”变“四基”

2001年版的“双基”:基础知识、基本技能。

2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

六、四个领域名称的变化

2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化

更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。

八、实施建议的变化

不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。

一、“课程基本理念”的修改

1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”

二、“设计思路”的修改

1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改

1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。

2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。

3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

4.规范了课程目标的若干术语。并在学段目标中使用这些术语。

四、“课程内容”(原“内容标准”)的修改

1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容

▲在“数与代数”领域,删除了一些内容,例如:

①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)

②对有效数字的要求——“了解有效数字的概念”(实验稿P32)

③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)

▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:

①关于等腰梯形的相关要求(实验稿P39、P43)

②探索并了解圆与圆的位置关系(实验稿P39)

③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)

④关于镜面对称的要求(实验稿P41)

▲“统计与概率”部分删除的内容

极差、频数折线图等内容

(2)新增加的内容

▲“数与代数”中既有必学的内容,也有选学的内容

①知道|a|的含义(这里a表示有理数)

②最简二次根式和最简分式的概念

③能进行简单的整式乘法运算中增加了一次式与二次式相乘

④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等

⑤会利用待定系数法确定一次函数的解析表达式

以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:

*⑥解简单的三元一次方程组

*⑦了解一元二次方程的根与系数的关系

*⑧知道给定不共线三点的坐标可以确定一个二次函数

▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义

②了解平行于同一条直线的两条直线平行

③会按照边长的关系和角的大小对三角形进行分类

④了解并证明圆内接四边形的对角互补

⑤了解正多边形的概念及正多边形与圆的关系

⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形

下面的要求是选学内容:

*⑦了解平行线性质定理的证明

*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧

*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等

*⑩了解相似三角形判定定理的证明

(3)在要求上有变化的内容(略)

4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。

五、“实施建议”的修改

“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

六、“实例”的修改

增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

七、增加附录

将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919