牛顿插值法课程设计
❶ 用MATLAB编写牛顿插值法,写出通用格式(掌握牛顿插值法基本思路和步骤,并完成算法的程序编写及其数值实)
牛师傅现在在哪工作?
❷ 用vb做数值分析课程设计
这口气太狂了,你就一个要代码的,跟要饭的没啥两样,狂啥?
❸ 牛顿插值法的matlab编程的m文件
牛顿插值法matlab的m文件,里面有调用示例,可以直接调用;
%保存文件名为New_Int.m
%Newton基本插值公式
%x为向量,全部的插值节点
%y为向量,差值节点处的函数值
%xi为标量,是自变量
%yi为xi出的函数估计值
function yi=New_Int(x,y,xi)
n=length(x);
m=length(y);
if n~=m
error('The lengths of X ang Y must be equal!');
return;
end
%计算均差表Y
Y=zeros(n);
Y(:,1)=y';
for k=1:n-1
for i=1:n-k
if abs(x(i+k)-x(i))<eps
error('the DATA is error!');
return;
end
Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));
end
end
%计算牛顿插值公式
yi=0;
for i=1:n
z=1;
for k=1:i-1
z=z*(xi-x(k));
end
yi=yi+Y(1,i)*z;
end
❹ 牛顿的插值法用C语言怎么编写怎么编啊
程序代码如下。
希望能帮助到你!内
牛顿插值容法
#include<stdio.h>
#include<math.h>
#define
n
4
void
difference(float
*x,float
*y,int
n)
{
float
*f;
int
k,i;
f=(float
*)malloc(n*sizeof(float));
for(k=1;k<=n;k
)
{
f[0]=y[k];
for(i=0;i<k;i
)
f[i
1]=(f[i]-y[i])/(x[k]-x[i]);
y[k]=f[k];
}
return;
}
main()
{
int
i;
float
varx=0.895,b;
float
x[n
1]={0.4,0.55,0.65,0.8,0.9};
float
y[n
1]={0.41075,0.57815,0.69675,0.88811,1.02652};
difference(x,(float
*
❺ 一个很白痴的问题:牛顿插值法,简要说明
牛顿插值法,是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数回,在这些点上取已知值,答在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)
❻ 求用c语言编写牛顿插值法
程序代码如下。
希望能帮助到你!
牛顿内插值法容
#include<stdio.h>
#include<math.h>
#define N 4
void Difference(float *x,float *y,int n)
{
float *f;
int k,i;
f=(float *)malloc(n*sizeof(float));
for(k=1;k<=n;k++)
{
f[0]=y[k];
for(i=0;i<k;i++)
f[i+1]=(f[i]-y[i])/(x[k]-x[i]);
y[k]=f[k];
}
return;
}
main()
{
int i;
float varx=0.895,b;
float x[N+1]={0.4,0.55,0.65,0.8,0.9};
float y[N+1]={0.41075,0.57815,0.69675,0.88811,1.02652};
Difference(x,(float *)y,N);
b=y[N];
for(i=N-1;i>=0;i--)b=b*(varx-x[i])+y[i];
printf("Nn(%f)=%f",varx,b);
getchar();
}
❼ 插值法的Newton插值
Newton插值也是n次多项制式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。
❽ 牛顿插值法的由来、牛顿插值法的应用、牛顿插值法的公式,急用
如果将直线用点斜式表示,即phy(x)=y0+(y1-y0)/(x1-x0)*(x-x0),由此导出牛顿插值公式。将上述公内式变形得到:容phy(x)=f(x0)+(y1-y0)/(x1-x0)*(x-x0)=f(x0)+(x-x0)f[x0,x1], 其中f[x0,x1]=(y0-y1)/(x0-x1)=(f(x0)-f(x1))/(x0-x1).
此即为一次牛顿插值公式。进行递推得到:
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)
作为一种结构紧凑,应用方便的插值方法,在工程技术领域对的应用将其广泛,如大气监测,凸轮曲线设计等等。
❾ 牛顿插值法的理论背景和详细资料
插值法利用函复数f (x)在某区间制中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。