当前位置:首页 » 课程大全 » 定向钻井技术课程标准

定向钻井技术课程标准

发布时间: 2021-03-10 16:37:40

Ⅰ 定向井施工技术

地热资源开发利用需要“回灌开发”模式。回灌开发是在同一施工地点开凿两眼或两眼以上地热井,一眼作为开采井,另一眼作为回灌井。受城市用地面积的限制以及运行管理的需要,多以“对井”的方式成井。对井井口直线距离在2.5~10m之间,为防止开采、回灌地热流体短时间内相互干扰,井底距离一般保持在800m以上,这就需要有定向井施工技术的支持。

(一)定向井设计

定向井设计原则是为实现钻井目的,合理选择目标点的层位、确定靶区半径,尽可能选择简单的井身剖面类型;设计的基本数据包括地面井位坐标、井底坐标、方位角、井底水平位移、造斜点位置、最大井斜角。定向井设计前要了解设计井区的地质条件,如地层、岩性、压力、倾角、倾向、断层等。还要了解地层造斜特性(以便利用地层的方位漂移规律),分析井区已有定向井资料等,从设计上避免井下复杂情况发生。

地热井不同于石油开采井。首先,地热井要有泵室,泵室为直井段;其次,以扶盆地热储层在一定范围内目的层可近似看作水平无限延伸(断裂型地热井除外),因此,定向井目标靶区半径可适当放大,这些都为定向井设计提供了方便。

1)井身剖面设计:定向井井身剖面类型多种多样,常见的有三段制(多目标、较浅井)和五段制(小位移、较深井),选用的原则是保证达到钻井目的;尽可能简单,利于安全、快速地进行作业以降低钻井成本。地热定向井多用五段制,即直井段、增斜段、稳斜段、降斜段、直井段。

2)造斜点设计:造斜点的选择是定向井成功的关键因素之一。一方面定向井施工要求造斜点岩石结构比较稳定、可钻性比较均匀,避免岩石破碎段、流砂层或易坍塌等复杂地层,同时岩石的硬度应能起到对造斜钻具的支撑作用。另一方面造斜点的深度应根据设计井的垂直井深、水平位移大小和选用的井身剖面类型而决定。实际工作中往往把造斜点选择在尽可能浅的地层中,以利于用尽量小的井斜达到理想的成井水平位移。

3)最大井斜角设计:井斜角是钻具行迹与垂直方向的夹角,主要依据钻井设备定向能力、垂直井深与目标水平位移确定。大量的钻井实践证明,井斜角小于15°,方位不稳定,容易漂移。井斜角大于45°,施工难度较大,井壁易失稳,所以,最大井斜角最好控制在15°~45°之间。

(二)定向井施工安全措施

由于定向井井眼形状复杂,水平位移较大,易发生井下复杂情况和产生井下事故。

1)压差卡钻。在定向井施工中,斜靠在井壁上的钻具与井壁的接触面积大,作用在井壁上的正压力也增大,易发生压差卡钻。预防措施主要是采用润滑性能优良的钻井液:①加入润滑剂使泥饼摩擦系数小于0.2;②采用混油泥浆、混油量8%~15%;③下套管及电测井之前加1.5%~2%的固体润滑剂,保证顺利施工。

2)键槽卡钻。定向井钻进和起下钻过程中,钻具长时间拉、摩、碰井壁,容易形成键槽。预防措施有:①在曲率较大的井段,定期下入键槽破坏器,破坏键槽;②认真记录起下钻遇阻遇卡位置,结合测斜资料分析,提前破坏处理。

3)其他防卡措施:钻井液应具有良好的净化系统,至少配备三级净化装置,保证钻井液含砂量不大于0.5%;控制钻井液,使其屈服值不小于6Pa,提高携带岩屑能力,保证井眼干净。

(三)定向井施工实例

目前,天津地区地热定向井有90对之多,积累了在中低温沉积盆地地热定向井的施工经验,下面以SR19D,SR20D基岩地热定向“对井”为例,对地热定向井施工工艺进行探讨。

1.地层及岩性

该“对井”钻遇地层为第四系平原组,新近系明化镇组、馆陶组,古生界寒武系,新元古界青白口系景儿峪组、龙山组,中元古界蓟县系雾迷山组(目的层),见表4-3。

2.定向井工艺

(1)定向工具的选择

该“对井”定向井段为Φ311mm(

″)井眼,选用8″无磁钻铤、

″纳维钻具、2.5°弯接头、高压循环头等定向工具,测量仪器定向井段采用有线随钻测斜仪,增斜和稳斜井段采用自浮式电子测斜仪。

表4-3 设计对井钻遇地层及岩性

(2)定向井设计

1)井身结构设计。根据钻井所在区域地质情况和地热钻井技术特点,设计为四开井,井身结构及套管程序为:一开钻头直径Φ444.5mm,套管直径Φ339.7mm,下深400m;二开钻头直径Φ311mm,套管直径Φ244.5mm,进入基岩2m左右封闭松散软地层;三开钻头直径Φ215.9mm,套管直径Φ177.8mm,进入取水目的层雾迷山组白云岩2m左右下管;所有套管必须符合美国石油协会指定的API标准。四开钻头直径为Φ152.4mm,裸眼成井,井身结构见表4-4。

表4-4 定向井井身结构表

2)井身剖面的设计。根据施工井地层特点和井身结构设计定向井为五段制井身剖面,即直井段、增斜段、稳斜段、自然降斜段和直井段。

3)造斜点的确定。根据施工设计和实际钻进地层分析,SR19D造斜点定在820m,SR20D造斜点定在765m的新近系胶结较好的泥岩中。

4)设计方位角、水平位移、造斜率和最大井斜角。根据地层产状、钻井深度和构造情况,设计SR19D井方位角为135°,水平位移为400m,SR20D井方位角为315°,水平位移为400m,井眼曲率为12°/100m以内,最大井斜角21°。

(3)定向井施工工艺措施和注意事项

1)直井段采用塔式钻具结构,严格按规定参数钻进,井斜角控制在1°以内。

2)定向造斜井段选在新近系上部的泥岩井段,采用有线随钻定向速度较快,但造斜率一般应控制在12°/100m以内,采用2.5°弯接头一般50~70m可达到8°井斜,完成定向工作,在定向造斜时还考虑了转盘增斜作用,使用的牙轮钻头钻进时方位多向顺时针方向漂移即右手漂移规律,因此该井在定向造斜过程中比设计方位提前6°~10°,目的是利用右手漂移规律在钻达目的层时中靶精度更高。

3)转盘钻增斜井段,每钻进30m要测斜一次,根据轨迹测量情况调节钻压和转速,以控制增斜速度和方位,井眼轨迹圆滑,钻至最大井斜角21°可以进行稳斜钻进。

4)斜井段700~1300m为Φ311mm大井眼,钻进过程中岩屑较多,要求泥浆泵排量要大,并根据井内情况和岩屑返出情况,每钻进100~200m进行一次短提下钻,以清理下井壁的“岩屑床”,起钻时要观察井口,防止出现“抽吸”,必要时接方钻杆循环。

5)稳斜段,按照设计要求采用3只扶正器稳斜钻具结构,就可满足新近系Φ311mm井段稳斜要求,每钻进50m要测斜一次,根据轨迹测量情况调节钻压和转速,控制增斜速度和方位,可以达到按所需轨迹施工的目的。而基岩地层Φ215.9mm井段稳斜时,情况相对较复杂,由于地层塑性小,刚性较大,因此钻井过程中受岩层倾角和走向影响,非常容易出现降斜和“跑方位”情况,施工中采用4只扶正器的稳斜钻具结构,并根据测量井斜和方位情况及时调整钻具结构,如采用微增结构或增斜结构进行稳斜, SR19D井遇到稳斜稳不住情况,利用增斜钻具稳斜较理想。

6)四开Φ152.4mm井段为工作的目的层,主要岩性是白云岩,裂隙发育、漏失严重,采用自然降斜钻具结构。

3.钻井液调配

一开井段:钻遇地层为第四系。岩性:粘土、砂层、砂质粘土。钻井液用搬土浆。

二开井段:钻遇地层为新近系。岩性:砂岩、泥岩、砂泥岩。井眼尺寸:Φ311mm,钻井液类型:聚合物防塌钻井液。本井段难点:稳定井壁、大井眼携砂、润滑防卡。

1)钻井液性能为:密度1.05~1.08g/cm3,黏度35~38s,API失水≤8mL,塑性黏度7~10mPa·s,动切力3~6Pa,10s切力0.5~1.0Pa,10min切力1.0~3.0Pa,pH8.5~9。

2)二开钻水泥塞时,加入适量的纯碱,避免水泥对钻井液的污染。定向钻进前,加入极压润滑剂、润滑防塌剂、胺盐等钻井液材料,保证钻井液性能稳定。上部地层机械钻速较快,及时排放沉砂,降低劣质固相对钻井液的污染。

3)完钻前50m调整好钻井液各项性能,保证电测和下套管施工的顺利进行。

三开井段:钻遇地层主要为古生界寒武系和新元古界。岩性:泥质灰岩、泥页岩、泥岩、灰岩。井眼尺寸:215.9mm。钻井液类型:抑制性防塌钻井液。本井段难点:泥岩防缩径、井眼净化、润滑防卡、防漏。

1)钻井液性能:密度1.10~1.15g/cm3,黏度38~48s,API失水≤12mL,塑性黏度8~15mPa·s,动切力5~8Pa,10s切力1.0~2.0Pa,10min切力2.0~4.0Pa,pH8.5~9.0。

2)钻水泥塞时,加入适量的纯碱,避免水泥对钻井液的污染。钻进过程中,补充极压润滑剂、防塌护壁剂、高温降滤失剂等钻井液材料,保证钻井液性能稳定。

四开井段:清水钻进。

4.根据地层情况采取的堵漏措施

SR19D,SR20D两井相距很近,但在施工中发现两井钻遇地层相差较大。尤以古生界寒武系最为突出。SR19D井寒武系厚度为164m,其中昌平组缺失,井底没有出现异常。SR20D井的寒武系厚度355m,其中昌平组厚78m。当钻进至1526m时进尺开始加快至3m/min,当钻进至1534m时出现大漏基本不返浆,上返的少量岩屑中含有大量的风化的灰岩,滴酸起泡剧烈,为防止井下重大事故发生,果断甩掉3个扶正器,继续钻进。1558m再次出现大漏不返浆,提钻,实施静止堵漏。3天的堵漏过程中,多次出现井下危险,但由于采取措施及时、方法得当,保证了生产的安全进行。

Ⅱ 石油钻井技术

《中国国土资源报》2007年1月29日3版刊登了“新型地质导向钻井系统研制成功”的消息。这套系统由3个子系统组成:新型正脉冲无线随钻测斜系统、测传马达及无线接收系统、地面信息处理与决策系统。它具有测量、传输和导向三大功能。在研制过程中连续进行了4次地质导向钻井实验和钻水平井的工业化应用,取得成功。这一成果的取得标志着我国在定向钻井技术上取得重大突破。

2.3.1.1 地质导向钻井技术

地质导向钻井技术是20世纪90年代发展起来的前沿钻井技术,其核心是用随钻定向测量数据和随钻地层评价测井数据以人机对话方式来控制井眼轨迹。与普通的定向钻井技术不同之处是,它以井下实际地质特征来确定和控制井眼轨迹,而不是按预先设计的井眼轨迹进行钻井。地质导向钻井技术能使井眼轨迹避开地层界面和地层流体界面始终位于产层内,从而可以精确地控制井下钻具命中最佳地质目标。实现地质导向钻井的几项关键技术是随钻测量、随钻测井技术,旋转导向闭环控制系统等。

随钻测量(MWD)的两项基本任务是测量井斜和钻井方位,其井下部分主要由探管、脉冲器、动力短节(或电池筒)和井底钻压短节组成,探管内包含各种传感器,如井斜、方位、温度、震动传感器等。探管内的微处理器对各种传感器传来的信号进行放大并处理,将其转换成十进制,再转换成二进制数码,并按事先设定好的编码顺序把所有数据排列好。脉冲器用来传输脉冲信号,并接受地面指令。它是实现地面与井下双向通讯并将井下资料实时传输到地面的唯一通道。井下动力部分有锂电池或涡轮发电机两种,其作用是为井下各种传感器和电子元件供电。井底钻压短节用于测定井底钻压和井底扭矩。

随钻测井系统(LWD)是当代石油钻井最新技术之一。Schlumberger公司生产的双补偿电阻率仪CDR和双补偿中子密度仪CDN两种测井系统代表了当今随钻测井系统的最高水平。CDR和CDN可以单独使用也可以两项一起与MWD联合使用。LWD的CDR系统用电磁波传送信息,整套系统安装在一特制的无磁钻铤或短节内。该系统主要包括电池筒、伽马传感器、电导率测量总成和探管。它主要测量并实时传输地层的伽马曲线和深、浅电阻率曲线。对这些曲线进行分析,可以马上判断出地层的岩性并在一定程度上判断地层流体的类型。LWD的CDN系统用来测量地层密度曲线和中子孔隙度曲线。利用这两种曲线可以进一步鉴定地层岩性,判断地层的孔隙度、地层流体的性质和地层的渗透率。

旋转导向钻井系统(Steerable Rotary Drilling System)或旋转闭环系统(Rotary Closed Loop System,RCLS)。常规定向钻井技术使用导向弯外壳马达控制钻井方向施工定向井。钻进时,导向马达以“滑行”和“旋转”两种模式运转。滑行模式用来改变井的方位和井斜,旋转模式用来沿固定方向钻进。其缺点是用滑行模式钻进时,机械钻速只有旋转模式钻进时的50%,不仅钻进效率低,而且钻头选择受到限制,井眼净化效果及井眼质量也差。旋转导向闭环钻井系统完全避免了上述缺点。旋转导向钻井系统的研制成功使定向井钻井轨迹的控制从借助起下钻时人工更换钻具弯接头和工具面向角来改变方位角和顶角的阶段,进入到利用电、液或泥浆脉冲信号从地面随时改变方位角和顶角的阶段。从而使定向井钻井进入了真正的导向钻井方式。在定向井钻井技术发展过程中,如果说井下钻井马达的问世和应用使定向钻井成为现实的话,那么可转向井下钻井马达的问世和应用则大大提高了井眼的控制能力和自动化水平并减少了提下钻次数。旋转导向钻井系统钻井轨迹控制机理和闭环系统如图2.5所示。

目前从事旋转导向钻井系统研制的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。这些公司的旋转导向闭环钻井系统按定向方法又可分为自动动力定向和人工定向。自动动力定向一般由确定钻具前进方向的测量仪表、动力源和调节钻具方向的执行机构组成。人工定向系统定向类似于导向马达定向方法,需要在每次连接钻杆时进行定向。两种定向系统的定向控制原理都是通过给钻头施加直接或间接侧向力使钻头倾斜来实现的(图2.6)。按具体的导向方式又可划分为推靠式和指向式两种。地质导向钻井技术使水平钻井、大位移钻井、分支井钻井得到广泛应用。大位移井钻井技术和多分支井钻井技术代表了水平钻井技术的最新成果水平。

图2.5 旋转导向闭环系统

(1)水平井钻井技术

目前,国外水平钻井技术已发展成为一项常规技术。美国的水平井技术成功率已达90%~95%。用于水平井钻进的井下动力钻具近年来取得了长足进步,大功率串联马达及加长马达、转弯灵活的铰接式马达以及用于地质导向钻井的仪表化马达相继研制成功并投入使用。为满足所有导向钻具和中曲率半径造斜钻具的要求,使用调角度的马达弯外壳取代了原来的固定弯外壳;为获得更好的定向测量,用非磁性马达取代了磁性马达。研制了耐磨损、抗冲击的新型水平井钻头。

图2.6 旋转导向钻井系统定向轨迹控制原理

(2)大位移井钻井技术

大位移井通常是指水平位移与井的垂深之比(HD/TVD)≥2的井。大位移井顶角≥86°时称为大位移水平井。HD/TVD≥3的井称为高水垂比大位移井。大位移井钻井技术是定向井、水平井、深井、超深井钻井技术的综合集成应用。现代高新钻井技术,随钻测井技术(LWD)、旋转导向钻井系统(SRD)、随钻环空压力测量(PWD)等在大位移井钻井过程中的集成应用,代表了当今世界钻井技术的一个高峰。目前世界上钻成水平位移最大的大位移井,水平位移达到10728m,斜深达11287m,该记录是BP阿莫科公司于1999年在英国Wytch Farm油田M-16井中创造的(图2.7所示)。三维多目标大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是将原计划用2口井开发该油田西部和北部油藏的方案改为一口井开采方案后钻成的。为了钻成这口井,制定了一套能够钻达所有目标并最大限度地减少摩阻和扭矩的钻井设计方案。根据该方案,把2630m长的水平井段钻到7500m深度,穿过6个目标区,总的方位角变化量达160°。

图2.7 M-16井井身轨迹

我国从1996年12月开始,先后在南海东部海域油田进行了大位移井开发试验,截至2005年底,已成功钻成21口大位移井,其中高水垂比大位移井5口。为开发西江24-1含油构造实施的8口大位移井,其井深均超过8600m,水平位移都超过了7300m,水垂比均大于2.6,其中西江24-3-A4井水平位移达到了8063m,创造了当时(1997年)的大位移井世界纪录。大位移井钻井涉及的关键技术有很多,国内外目前研究的热点问题包括:钻井设备的适应性和综合运用能力、大斜度(大于80°)长裸眼钻进过程中井眼稳定和水平段延伸极限的理论分析与计算、大位移井钻井钻具摩擦阻力/扭矩的计算和减阻、成井过程中套管下入难度大及套管磨损严重等。此外大位移井钻井过程中的测量和定向控制、最优的井身剖面(结构)设计、钻柱设计、钻井液性能选择及井眼净化、泥浆固控、定向钻井优化、测量、钻柱振动等问题也处在不断探索研究之中。

(3)分支井钻井技术

多分支井钻井技术产生于20世纪70年代,并于90年代随着中、小曲率半径水平定向井钻进技术的发展逐渐成熟起来。多分支井钻井是水平井技术的集成发展。多分支井是指在一个主井眼(直井、定向井、水平井)中钻出若干进入油(气)藏的分支井眼。其主要优点是能够进一步扩大井眼同油气层的接触面积、减小各向异性的影响、降低水锥水串、降低钻井成本,而且可以分层开采。目前,全世界已钻成上千口分支井,最多的有10个分支。多分支井可以从一个井眼中获得最大的总水平位移,在相同或不同方向上钻穿不同深度的多层油气层。多分支井井眼较短,大部分是尾管和裸眼完井,而且一般为砂岩油藏。

多分支井最早是从简单的套管段铣开窗侧钻、裸眼完井开始的。因其存在无法重入各个分支井和无法解决井壁坍塌等问题,后经不断研究探索,1993年以来预开窗侧钻分支井、固井回接至主井筒套管技术得到推广应用。该技术具有主井筒与分支井筒间的机械连接性、水力完整性和选择重入性,能够满足钻井、固井、测井、试油、注水、油层改造、修井和分层开采的要求。目前,国外常用的多分支系统主要有:非重入多分支系统(NAMLS),双管柱多分支系统(DSMLS),分支重入系统(LRS),分支回接系统(LTBS)。目前国外主要采用4种方式钻多分支井:①开窗侧钻;②预设窗口;③裸眼侧钻;④井下分支系统(Down Hole Splitter System)。

2.3.1.2 连续管钻井(CTD)技术

连续管钻井技术又叫柔性钻杆钻井技术。开始于20世纪60年代,最早研制和试用这一技术钻井的有法国、美国和匈牙利。早期法国连续管钻进技术最先进,1966年投入工业性试验,70年代就研制出各种连续管钻机,重点用于海洋钻进。当时法国制造的连续管单根长度达到550m。美国、匈牙利制造的连续管和法国的类型基本相同,单根长度只有20~30m。

早期研制的连续管有两种形式。一种是供孔底电钻使用,由4层组成,最内层为橡胶或橡胶金属软管的心管,孔底电机动力线就埋设在心管内;心管外是用2层钢丝和橡胶贴合而成的防爆层;再外层是钢丝骨架层,用于承受拉力和扭矩;最外层是防护胶层,其作用是防水并保护钢丝。另一种是供孔底涡轮钻具使用的,因不需要埋设动力电缆,其结构要比第一种简单得多。第四届国际石油会议之后,美国等西方国家把注意力集中在发展小井眼井上,限制了无杆电钻的发展。连续管钻井技术的研究也放慢了脚步。我国于20世纪70年代曾开展无杆电钻和连续管钻井技术的研究。勘探所与青岛橡胶六厂合作研制的多种规格的柔性钻杆,经过单项性能试验后,于1975年初步用于涡轮钻。1978年12月成功用于海上柔性钻杆孔底电钻,并建造了我国第一台柔杆钻机钻探船。1979~1984年勘探所联合清华大学电力工程系、青岛橡胶六厂研究所和北京地质局修配厂共同研制了DRD-65型柔管钻机和柔性钻杆。DRD-65型柔管钻机主要有柔性钻杆、Φ146mm潜孔电钻、钻塔、柔杆绞车及波浪补偿器、泥浆泵、电控系统和液控系统等部分组成。研制的柔性钻杆主要由橡胶、橡胶布层、钢丝绳及动力线组成。拉力由柔杆中的钢丝骨架层承担,钢丝绳为0.7mm×7股,直径2.1mm,每根拉力不小于4350N,总数为134根,计算拉力为500kN,试验拉力为360kN。钻进过程中,柔性钻杆起的作用为:起下钻具、承受反扭矩、引导冲洗液进入孔底、通过设于柔性钻杆壁内的电缆向孔底电钻输送电力驱动潜孔电钻运转、向地表传送井底钻井参数等。

柔性钻杆性能参数为:内径32mm;抗扭矩不小于1030N·m;外径85~90mm;单位质量13kg/m;抗内压(工作压力)40kg/cm2,曲率半径不大于0.75m,抗外压不小于10kg/cm2;弯曲度:两弯曲形成的夹角不大于120°;额定拉力1000kN;柔杆内埋设动力导线3组,每组15mm2,信号线二根;柔杆单根长度为40、80m两种规格。

Φ146mm型柔杆钻机由Φ127mm电动机、减速器、液压平衡器和减震器组成。动力是潜孔电钻,它直接带动钻头潜入孔底钻井。Φ146mm孔底电钻是外通水式,通水间隙宽5mm,通水横断面积为2055mm2

与常规钻井技术相比,连续管钻井应用于石油钻探具有以下优点:欠平衡钻井时比常规钻井更安全;因省去了提下钻作业程序,可大大节省钻井辅助时间,缩短作业周期;连续管钻井技术为孔底动力电钻的发展及孔底钻进参数的测量提供了方便条件;在制作连续管时,电缆及测井信号线就事先埋设在连续管壁内,因此也可以说连续管本身就是以钢丝为骨架的电缆,通过它可以很方便地向孔底动力电钻输送电力,也可以很方便地实现地面与孔底的信息传递;因不需拧卸钻杆,因此在钻进及提下钻过程中可以始终保持冲洗液循环,对保持井壁稳定、减少孔内事故意义重大;海上钻探时,可以补偿海浪对钻井船的漂移影响;避免了回转钻杆柱的功率损失,可以提高能量利用率,深孔钻进时效果更明显。正是由于连续管钻井技术有上述优点,加之油田勘探需要以及相关基础工业技术的发展为连续管技术提供了进一步发展的条件,在经过了一段时间的沉寂之后,20世纪80年代末90年代初,连续管钻井技术又呈现出飞速发展之势。其油田勘探工作量年增长量达到20%。连续管钻井技术研究应用进展情况简述如下。

1)数据和动力传输热塑复合连续管研制成功。这种连续管是由壳牌国际勘探公司与航空开发公司于1999年在热塑复合连续管基础上开始研制的。它由热塑衬管和缠绕在外面的碳或玻璃热塑复合层组成。中层含有3根铜质导线、导线被玻璃复合层隔开。碳复合层的作用是提供强度、刚度和电屏蔽。玻璃复合层的作用是保证强度和电隔离。最外层是保护层。这种连续管可载荷1.5kV电压,输出功率20kW,传输距离可达7km,耐温150℃。每根连续管之间用一种特制接头进行连接。接头由一个钢制的内金属部件和管子端部的金属环组成。这种连续管主要用于潜孔电钻钻井。新研制的数据和动力传输连续管改变了过去用潜孔电钻钻井时,电缆在连续管内孔输送电力影响冲洗液循环的缺点。

2)井下钻具和钻具组合取得新进展。XL技术公司研制成功一种连续管钻井的电动井下钻具组合。该钻具组合主要由电动马达、压力传感器、温度传感器和震动传感器组成。适用于3.75in井眼的电动井下马达已交付使用。下一步设想是把这种新型电动马达用于一种新的闭环钻井系统。这种电动井下钻具组合具有许多优点:不用钻井液作为动力介质,对钻井液性能没有特殊要求,因而是欠平衡钻井和海上钻井的理想工具;可在高温下作业,振动小,马达寿命长;闭环钻井时借助连续管内设电缆可把测量数据实时传送到井口操纵台,便于对井底电动马达进行灵活控制,因而可使钻井效率达到最佳;Sperry sun钻井服务公司研制了一种连续管钻井用的新的导向钻具组合。这种钻具组合由专门设计的下部阳螺纹泥浆马达和长保径的PDC钻头组成。长保径钻头起一个近钻头稳定器的作用,可以大幅度降低振动,提高井眼质量和机械钻速。泥浆马达有一个特制的轴承组和轴,与长保径钻头匹配时能降低马达的弯曲角而不影响定向性能。在大尺寸井眼(>6in)中进行的现场试验证明,导向钻具组合具有机械钻速高、井眼质量好、井下振动小、钻头寿命长、设备可靠性较高等优点。另外还研制成功了一种连续软管欠平衡钻井用的绳索式井底钻具组合。该钻具组合外径为in上部与外径2in或in的连续管配用,下部接钻铤和in钻头。该钻具组合由电缆式遥控器、稳定的MWD仪器、有效的电子定向器及其他参数测量和传输器件组成。电缆通过连续管内孔下入孔底,能实时监测并处理工具面向角、钻井顶角、方位角、自然伽马、温度、径向振动频率、套管接箍定位、程序状态指令、管内与环空压差等参数。钻具的电子方位器能在钻井时在导向泥浆马达连续旋转的情况下测量并提供井斜和方位两种参数。

其他方面的新进展包括:连续管钻井技术成功用于超高压层侧钻;增加连续管钻井位移的新工具研制成功;连续管钻井与欠平衡钻井技术结合打水平井取得好效果;适于连续管钻井的混合钻机研制成功;连续管钻井理论取得新突破。

2.3.1.3 石油勘探小井眼钻井技术

石油部门通常把70%的井段直径小于177.8mm的井称为小井眼井。由于小井眼比传统的石油钻井所需钻井设备小且少、钻探耗材少、井场占地面积小,从而可以节约大量勘探开发成本,实践证明可节约成本30%左右,一些边远地区探井可节约50%~75%。因此小井眼井应用领域和应用面越来越大。目前小井眼井主要用于:①以获取地质资料为主要目的的环境比较恶劣的新探区或边际探区探井;②600~1000m浅油气藏开发;③低压、低渗、低产油气藏开发;④老油气田挖潜改造等。

2.3.1.4 套管钻井技术

套管钻井就是以套管柱取代钻杆柱实施钻井作业的钻井技术。不言而喻套管钻井的实质是不提钻换钻头及钻具的钻进技术。套管钻井思想的由来是受早期(18世纪中期钢丝绳冲击钻进方法用于石油勘探,19世纪末期转盘回转钻井方法开始出现并用于石油钻井)钢丝绳冲击钻进(顿钻时代)提下钻速度快,转盘回转钻进井眼清洁且钻进速度快的启发而产生的。1950年在这一思想的启发下,人们开始在陆上钻石油井时,用套管带钻头钻穿油层到设计孔深,然后将管子固定在井中成井,钻头也不回收。后来,Sperry-sun钻井服务公司和Tesco公司根据这一钻井原理各自开发出套管钻井技术并制定了各自的套管钻井技术发展战略。2000年,Tesco公司将4.5~13.375in的套管钻井技术推向市场,为世界各地的油田勘探服务。真正意义的套管钻井技术从投放市场至今还不到10年时间。

套管钻井技术的特点和优势可归纳如下。

1)钻进过程中不用起下钻,只利用绞车系统起下钻头和孔内钻具组合,因而可节省钻井时间和钻井费用。钻进完成后即等于下套管作业完成,可节省完井时间和完井费用。

2)可减少常规钻井工艺存在的诸如井壁坍塌、井壁冲刷、井壁键槽和台阶等事故隐患。

3)钻进全过程及起下井底钻具时都能保持泥浆连续循环,有利于防止钻屑聚集,减少井涌发生。套管与井壁之间环状间隙小,可改善水力参数,提高泥浆上返速度,改善井眼清洗效果。

套管钻井分为3种类型:普通套管钻井技术、阶段套管或尾管钻井技术和全程套管钻井技术。普通套管钻井是指在对钻机和钻具做少许改造的基础上,用套管作为钻柱接上方钻杆和钻头进行钻井。这种方式主要用于钻小井眼井。尾管钻井技术是指在钻井过程中,当钻入破碎带或涌水层段而无法正常钻进时,在钻柱下端连接一段套管和一种特制工具,打完这一段起出钻头把套管留在井内并固井的钻井技术。其目的是为了封隔破碎带和水层,保证孔内安全并维持正常钻进。通常所说的套管钻井技术是指全程套管钻井技术。全程套管钻井技术使用特制的套管钻机、钻具和钻头,利用套管作为水利通道,采用绳索式钻井马达作业的一种钻井工艺。目前,研究和开发这种钻井技术的主要是加拿大的Tesco公司,并在海上进行过钻井,达到了降低成本的目的。但是这种钻井技术目前仍处于研究完善阶段,还存在许多问题有待研究解决。这些问题主要包括:①不能进行常规的电缆测井;②钻头泥包问题严重,至今没有可靠的解决办法;③加压钻进时,底部套管会产生横向振动,致使套管和套管接头损坏,目前还没有找到解决消除或减轻套管横向振动的可靠方法;④由于套管钻进不使用钻铤,加压困难,所以机械钻速低于常规钻杆钻井;部分抵消了套管钻进提下钻节省的时间;⑤套管钻井主要用于钻进破碎带和涌水地层,其应用范围还不大。

我国中石油系统的研究机构也在探索研究套管钻井技术,但至今还没有见到公开报道的成果。目前,套管钻井技术的研究内容,除了研制专用套管钻机和钻具外,重点针对上述问题开展。一是进行钻头的研究以解决钻头泥包问题;二是研究防止套管横向振动的措施;三是研究提高套管钻井机械钻速的有效办法;四是研究套管钻井固井办法。

套管钻井应用实例:2001年,美国谢夫隆生产公司利用加拿大Tesco公司的套管钻井技术在墨西哥湾打了2口定向井(A-12和A-13井)。两井成井深度分别为3222×30.48cm和3728×30.48cm。为了进行对比分析,又用常规方法打了一口A-14井,结果显示,同样深度A-14井用时75.5h,A-13井用时59.5h。表层井段钻速比较,A-12 井的平均机械钻速为141ft/h,A-13井为187ft/h,A-14井为159ft/h。这说明套管钻井的机械钻速与常规方法机械钻速基本相同。但钻遇硬地层后套管钻井,钻压增加到6.75t,致使扩眼器切削齿损坏,钻速降低很多。BP公司用套管钻井技术在怀俄明州钻了5口井。井深为8200~9500ft,且都是从井口钻到油层井段。钻进过程中遇到了钻头泥包和套管振动问题。

此外,膨胀套管技术也是近年来发展起来的一种新技术,主要用于钻井过程中隔离漏失、涌水、遇水膨胀缩经、破碎掉块易坍塌等地层以及石油开采时油管的修复。勘探所与中国地质大学合作已立项开展这方面的研究工作。

2.3.1.5 石油钻机的新发展

国外20世纪60年代末研制成功了AC-SCR-DC电驱动钻机,并首先应用于海洋钻井。由于电驱动钻机在传动、控制、安装、运移等方面明显优于机械传动钻机,因而获得很快的发展,目前已经普遍应用于各型钻机。90年代以来,由于电子器件的迅速发展,直流电驱动钻机可控硅整流系统由模拟控制发展为全数字控制,进一步提高了工作可靠性。同时随着交流变频技术的发展,交流变频首先于90年代初成功应用于顶部驱动装置,90年代中期开始应用于深井石油钻机。目前,交流变频电驱动已被公认为电驱动钻机的发展方向。

国内开展电驱动钻机的研究起步较晚。兰州石油化工机器厂于20世纪80年代先后研制并生产了ZJ60D型和ZJ45D型直流电驱动钻机,1995年成功研制了ZJ60DS型沙漠钻机,经应用均获得较好的评价。90年代末期以来,我国石油系统加大钻机的更新改造力度,电驱动钻机取得了较快发展,宝鸡石油机械厂和兰州石油化工机器厂等先后研制成功ZJ20D、ZJ50D、ZJ70D型直流电驱动钻机和ZJ20DB、ZJ40DB型交流变频电驱动钻机,四川油田也研制出了ZJ40DB交流变频电驱动钻机,明显提高了我国钻机的设计和制造水平。进入21世纪,辽河油田勘探装备工程公司自主研制成功了钻深能力为7000m的ZJ70D型直流电驱动钻机。该钻机具有自动送钻系统,代表了目前我国直流电驱动石油钻机的最高水平,整体配置是目前国内同类型钻机中最好的。2007年5月已出口阿塞拜疆,另两部4000m钻机则出口运往巴基斯坦和美国。由宝鸡石油机械有限责任公司于2003年研制成功并投放市场的ZJ70/4500DB型7000m交流变频电驱动钻机,是集机、电、数字为一体的现代化钻机,采用了交流变频单齿轮绞车和主轴自动送钻技术和“一对一”控制的AC-DC-AC全数字变频技术。该型钻机代表了我国石油钻机的最新水平。凭借其优良的性能价格比,2003年投放市场至今,订货已达83台套。其中美国、阿曼、委内瑞拉等国石油勘探公司订货达42台套。在国内则占领了近2~3年来同级别电驱动钻机50%的市场份额。ZJ70/4500DB型钻机主要性能参数:名义钻井深度7000m,最大钩载4500kN,绞车额定功率1470kW,绞车和转盘挡数I+IR交流变频驱动、无级调速,泥浆泵型号及台数F-1600三台,井架型式及有效高度K型45.5m,底座型式及台面高度:双升式/旋升式10.5m,动力传动方式AC-DC-AC全数字变频。

Ⅲ 煤层气井定向井钻井技术

侯岩波 孙建平 张健 孙强 李绍勇

基金项目:国家科技重大专项《山西沁水盆地南部煤层气直井开发示范工程》(编号2009ZX05060)

作者简介:侯岩波,1983年出生,男,河北迁安人,硕士,2009年毕业于中国矿业大学(北京)地质工程专业,现在中联煤层气有限责任公司从事煤层气勘探开发工作。E-mail:[email protected]

(中联煤层气有限责任公司 北京 100011)

摘要:煤层气储层特征等方面与常规天然气储层的差异,决定了煤层气钻井、完井、储层保护等技术的特殊性。在不断试验和总结的基础上,本文研究出了一整套适合煤层气开发的定向井钻井工艺技术及井身质量控制措施,符合产业化、商业化开发煤层气对降低钻井及生产成本的诉求,对经济高效开发煤层气具有借鉴意义。

关键词:煤层气 定向井 钻井工艺 井身质量

Drilling Technology in Coalbed Methane Directional Well

HOU Yanbo SUN Jianping ZHANG Jian SUN Qing LI Shaoyong

(China United Coalbed Methane Co., Ltd, Beijing, 100011, China)

Abstract: The reservoir of coal bed methane has many differences from conventional natural gas.These differences determine particularity of coal bed methane in drilling, well completion and reservoir protection.In the foundation of continuous experiment and summarize, this article study out a technical system in the drilling tech- nology in directional coal bed methane well and well quality controlling.These meet the requirements of rece drilling and proction cost in coal bed methane instrialization and commercialization.It has reference signifi- cance in exploiting coal bed methane economically and efficiently.

Keywords: coal bed methane; directional well; drilling technology; well quality

柿庄南区块位于沁水盆地南部太行山西麓,行政隶属于山西省晋城市沁水县及高平市。该区向北距山西省省会太原260公里,向东南距晋城市60公里,区块总面积约388km2,3#煤层资源丰度1.69亿m3/km2,本区块已成功开发了400余口煤层气井,单井平均产气量>1000m3/d。由于本区山峦重叠,沟壑纵横,森林密布,从保护环境,降低征地及钻前施工难度方面考虑,在局部地形复杂、林地密集地区部署2至4口定向井的丛式井井组进行煤层气开发,丛式井还可有效降低地面集输建设成本及日后排采的生产管理成本,是一种适用于该地区煤层气大规模开发的钻井技术。

1 地质概况

柿庄南区块第四系黄土层厚约30m,开发3#煤层钻遇基岩地层自上而下依次为刘家沟组、石千峰组、上石盒子组、下石盒子组、山西组、太原组(未钻穿),完钻原则为3#煤层底板以下50m,详见表1,总体而言该区地质条件简单,煤储层埋深适中,煤层气资源丰度高,开发条件优越。

表1 柿庄南区块地层特征简表

2 施工设计

以TS04C丛式井井组为例,该井组包括4口定向井,大门方向86°,磁偏角为-2.9°,井口间距5m且呈直线排开,设计时应充分考虑防碰措施,合理安排钻井顺序,使各井设计方位呈放射状分布,井眼轨迹不互相交错,具体设计见图1、图2。

成井工艺:一开井径φ311.15mm,钻至稳定基岩10m完钻,下入φ244.5mm×8.94mm表层套管,固井水泥需返至地面,二开井径φ15.9mm,钻至井深100m左右,开始改用螺杆钻具定向钻进,采用直-增-稳三段制井身剖面,最终稳斜至3#煤以下50m井深完钻,下入φ139.7mm×7.72mm生产套管固井。

图1 TS04C井组水平投影图

图2 TS04-4D井身轨迹数据

3 钻井设备与钻具

3.1 设备

钻机:TSJ-2000;GZ2000;GZ2600。钻塔:A字型,负荷≥700KN。泥浆泵:3NB-350;3NB-500;3NB-800,排量20~30L/s。动力:12V135,8V190,12V190柴油机。

3.2 钻具及其他

φ127mm钻杆、φ159mm无磁钻铤、φ159mm钻铤、φ165mm(1.25°/1.5°)单弯螺杆、φ214mm稳定器、单点照相/电子测斜仪。

4 钻井工艺

4.1 泥浆工艺

一开用膨润土粉、纯碱、烧碱、少量的聚丙烯酰胺钾盐KPAM及钠羧甲基纤维素CMC等有机处理剂配置低固相钻井液。纯碱及烧碱主要起改善粘土的水化分散相能,起到降失水、增粘和调节泥浆PH值的作用。CMC降失水剂提高了粘土颗粒的聚结稳定性,有利于保持钻井液中细颗粒的含量,形成致密的滤饼,降低滤失量,抑制泥岩等水敏地层膨胀,能有效巩固井壁,此外还有增粘作用,提高钻井液的携带岩屑能力,使含砂量降低,有效控制有害固相含量,减少重复破岩的几率,可延长钻头及螺杆等钻具的使用寿命,提高钻进效率。KPAM具有控制地层造浆的作用并兼有降失水、改善流型及增加润滑性等功能,能起到稳定井壁、降低钻井液滤失量,达到提高钻速的作用。在钻至目的煤层时,钻井液换用清水钻进直至完钻,若钻遇漏层或易垮地层,在保护储层的前提下可适当调整泥浆性能,酌情填加堵漏剂及其他处理剂以保证工程顺利完成。

煤层段钻井液性能:密度1.02~1.05g/cm3,粘度22~25s,pH值7.5~8.5,含砂量<0.2%。

4.2 表层钻进技术

钻具组合:φ311.15mm三牙轮钻头+φ159mm钻铤+φ127mm钻杆。

一开井段为第四系黄土层并含少量卵石,结构疏松,易漏易垮,钻进时主要保证不漏,适当调整泥浆,在钻进开始时要慢钻、吊打,保证不塌、打直,控制泵压、排量,防止把黄土层打漏。

一开采用φ311.15mm牙轮钻头钻进,钻压30~50KN,泵压2MPa。一开钻穿基岩超过10m后完钻,下入φ244.5mm×8.94mmJ55表层套管,套管节箍与地面水平,采用密度1.80g/cm3水泥固井并返至地面。

4.3 直井段钻井技术

钻具组合:φ215.9mm钻头+φ159mm钻铤+φ127mm钻杆。

二开直井段地层以砂岩、泥岩为主,可钻性较好,采用常规塔式钻具结构,为防止井斜钻进参数仍采用轻压吊打原则,并每钻进30m测斜一次,尽早跟踪监测井斜及方位变化,做好防碰,降低施工风险。

4.4 定向造斜段钻井技术

钻具组合:φ215.9mm钻头+φ165mm(1.25°/1.5°)单弯螺杆+φ159mm无磁钻铤+φ159mm钻铤*6根+φ127mm钻杆。

二开钻进至井深约100m时开始定向造斜,造斜定向造斜时要锁死转盘,采用单弯螺杆或直螺杆加弯接头定向造斜。测斜仪器要定期校正罗盘,保证数据采集准确,钻进1至2个单根测斜一次,螺杆钻进井段测斜间距≤20m。应在定向初期控制好井斜、方位,以防工具面常摆不到位,难以控制。在防碰井段及定向造斜段钻进时,钻井队要加密测点,勤计算,勤作图,密切掌握和预测井眼轨迹的变化;勤捞砂样观察是否出现水泥钻屑;认真分析蹩、跳钻现象。钻进参数:钻压50~60KN,泵压3~4MPa,螺杆马达转速200~300r/min,钻进过程中根据井眼轨迹实时调节钻进参数,方位误差变大则转速降低稳步控制方位。

考虑到煤层气井排采生产的特殊性、稳定性与连续性,产能建设单位对井眼轨迹尤其是定向造斜段有着较高要求,井眼轨迹越平滑曲率越小,泵抽系统与地层间的偏磨损耗则越小,越有利于生产单位连续稳定排采,因此要求造斜段造斜率≤4°/30m,造斜和扭方位井段连续三个测点的全角变化率≤5°/25m。

4.5 稳斜段钻井技术

钻具组合:φ215.9mm钻头+φ214mm稳定器+φ159mm无磁钻铤+φ159mm钻铤×6根+φ127mm钻杆。

由于采用直-增-稳三段制井身剖面,稳斜段原则上不允许下调顶角,为了避免出现定向井井眼轨迹失控现象,钻井施工中应以过程控制为重点。稳斜段要求送钻及钻速均匀,保证钻具负荷均匀,平稳工作。钻具组合在钻穿煤层时尽量去掉稳定器,虽煤层段以下井斜会微降2°~3°,但可有效防止煤层段井径严重垮塌,避免埋钻等事故发生几率,降低钻井施工风险。

根据要求靶点闭合方位误差小于5°,靶区半径20m,稳斜段钻井技术的核心就是严密控制井眼轨迹及方位漂移情况,根据测斜情况及时调整钻井参数及钻具组合,保证该井顺利中靶,主要措施是调整稳定器安放位置,改变稳定器外径,调整钻铤长度及钻压等参数以达到稳斜稳方位效果,在实际应用中,双扶钟摆钻具的井眼轨迹控制效果最佳,双扶可以有效减少局部狗腿问题,使轨迹更平滑,虽然增加了钻井的难度,但是为后期完井和下套管作业打下了较好的基础。钻进参数:钻压80~120KN,泵压3MPa。完钻后下入φ139.7mm×7.72mmJ55生产套管,通过在套管鞋和回压凡尔之间下入一根3m左右的短套管,可有效增加排采口袋长度,在增斜段等狗腿较大井段增加套管扶正器安放个数,采用密度1.65g/cm3水泥固井,水泥浆返至目的煤层以上200m。

5 煤层气定向井钻井新工艺

目前,钻井施工单位为提高钻进效率,普遍采用螺杆钻具和转盘相结合的复合钻进技术,从而减少旗下钻次数,并通过转盘和螺杆水力马达的配合提高机械转速,此外如需调整井斜与扭方位,不需起下钻,可根据井眼轨迹情况随时调整,对钻井轨迹控制及时高效,若与PDC配合组成四合一钻具结构,一趟钻便可完成从二开到完井,可以明显缩短钻井周期并将井身轨迹控制到最优。钻具组合:φ215.9mmPDC钻头+φ165mm.1.25°单弯螺杆+φ159mm钻铤×3m+φ210mm稳定器+φ165mm定向接头(0°)+φ159mm无磁钻铤+φ159mm钻铤+φ127mm钻杆。钻进参数:钻压50~60KN,泵压3~4MPa,螺杆马达转速200~300r/min。

由于对煤层气井定向井井身轨迹及钻进效率要求越来越高,可以引入MWD技术与复合钻进技术相结合,可以更好更方便地控制井眼轨迹,提高钻进效率。由于低成本钻井技术是目前中国煤层气资源开发的趋势,照搬应用常规油气田开发的随钻测井装备及技术会对钻井成本产生较大影响,但随着煤层气的大规模开发和对钻井工程提出越来越高的要求,不久的将来会出现适用于中国煤层气开发现状的MWD和LWD技术,其有着非常广阔的发展前景。

6 结论

(1)采用丛式井钻井技术开发煤层气资源,可节约土地资源,保护环境并有效降低地面集输工程及后期生产运营成本,经济效果显著。

(2)直-增-稳三段制井身剖面可靠合理,最有利于井身轨迹的控制和钻井施工,适宜煤层气的排采生产。

(3)不同井段在钻进过程中结合地层及井眼轨迹实际情况合理优化钻进参数,过程控制是定向井钻井技术的关键,只有严密监测井身轨迹并结合高效的钻井工艺,才能保证每口井以最优的井眼轨迹顺利中靶。

(4)使用四合一钻具结构有很强的稳斜、稳方位能力,并减少起下钻次数,与MWD相结合可减少井眼轨迹失控风险,并能有效提高钻进时效。

参考文献

吕贵州.2010.定向井的井身轨迹控制[J].陕西煤炭,1:85~86

吴小建.2006.螺杆钻定向钻探技术在煤层气钻井中的应用[J].探矿工程(岩土钻掘工程),11:48~49

席红喜,刘强,刘星光.2005.丛式井钻井技术在陕北油田的应用[J].科技情报开发与经济,15(7):293~294

Ⅳ 钻井技术分哪些

为了有效地开发油气田,政府常常用法律形式来规定井间距。在一个指定的区域内,只能开钻并完成一口天然气井,这一面积的标准为640acre (2600000m2 )。在美国和加拿大,一口井中或者一个天然气田的开采量,在某个特定的时间内都要受到限制。

定向钻井

按照传统的观点,绝大多数钻井都钻成一个垂直的井孔,按照垂直来要求的话仅仅有微小的偏差。但是最近,旋转钻井可以打出一口定向(偏斜)的井来,以达到用直井无法钻到的特殊目的层 (图3.3)。比如,可以通过打一口定向井而达到人口稠密区的地下目的层,而井位则可以设在该区之外。定向钻井可以灵活地达到一个复杂的产气地带,在井口中绕开落鱼钻进,或者从陆地钻达海域的储层,而在陆地上钻井要便宜得多。此外,许多钻井平台为了节省时间和投资,都采用了从一个浮动平台钻出多口定向井的技术。

图3.4张力支柱式钻井平台(引自Norman Hyne所著《石油勘探与开发》, Penn Well,1995)

一旦在海域发现了一个商业性天然气田,就可以用一台固定式或张力支柱式钻井平台进行开发作业。固定式、钢制的外壳是最常见的。它们的腿插入一些事先打入海底的钢筒中。相反,一台张力支柱式钻井平台浮在海上气田上,用一种直径较小的、空心的钢管,依靠本身的巨大重量矗立在海底(图3.4)。

Ⅳ 什么是定向钻探技术

定向钻井就是使钻孔的实际轨迹按照设计的轨迹,打到指定的靶区

Ⅵ 水平井钻井技术是什么

水平井钻井技术是利用特殊的井下动力工具与随钻测量仪器,钻成井斜角大于86°,并保持这一角度钻进一定长度井段的定向钻井技术。在油气田开发中,水平井可以增加裸露出油面积,数倍地提高油气产量。
水平井钻井技术包括随钻测量技术、井眼轨迹控制技术、井壁稳定技术、钻井完井液技术等。从垂直井段转变为水平井段的曲率半径越小,施工难度越大。
水平井按曲率半径分,可分为长半径水平井、中半径水平井、短半径水平井、超短半径水平井。按照井的类型分,可分为常规水平井、套管侧钻水平井、分支水平井。按照水平井的用途分,可分为生产水平井、注入水平井、横向勘探水平井。
水平井钻井技术起源于20世纪的30年代,发展于80年代。全球每年钻各种水平井在20000口以上。在国内,以胜利油田、辽河油田、新疆油田、长庆油田、塔里木油田等为代表的一些油田,也广泛应用水平井钻技术,开发各种油气藏,每年钻各类水平井2000余口,并都见到较好的效果。

Ⅶ 定向井工艺设计的主要内容是什么

无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念
地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:
井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素
对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。
实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:
① 实钻轨迹点的位置超前,相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。
② 轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。
③ 轨迹点的位置滞后,相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。
实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。
在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。
三、井身剖面的特点及广义调整井段的概念
根据长、中半径水平井常用井身剖面曲线的特点,剖面类型大致可分为单圆弧增斜剖面、具有稳斜调整段的剖面和多段增斜剖面(或分段造斜剖面)几种类型,不同的剖面类型在轨迹控制上有不同的特点,待钻井眼轨迹的预测和现场设计方法也有所不同。
1、 水平井常用井身剖面曲线的特点
① 单圆弧增斜剖面
单圆弧增斜剖面是最简单的剖面,它从造斜点开始,以不变的造斜率钻达目标,胜利油田的樊 13- 平 1 井采用了这种剖面。这种剖面要求靶区范围足够宽,以满足钻具造斜率偏差的要求,除非能够准确地控制钻具的造斜性能,否则需要花较大的工作量随时调整和控制造斜率,因而一般很少采用这种剖面。
② 具有切线调整段的剖面
具有切线调整段的剖面,它又可分为:
(a)单曲率—切线剖面:具有造斜率相等的两个造斜段,中间以稳斜段调整。
(b)变曲率—切线剖面:由两个(或两个以上)造斜率不相等的造斜段组成,中间用一个(或一个以上)稳斜段来调整。如永35—平 1 井、草 20—平 1 井、草 20—平 2 井等就属于这种剖面。
这是最常用的剖面类型,因为多数造斜钻具的造斜特性不可能保持非常稳定,常常产生一定程度的偏差,这就需要在造斜井段之间增加一斜直井段来调节补偿这种偏差。单曲率—切线剖面后一段的造斜率可以在钻第一造斜段的过程中比较精确地预测出来,然后及时计算修改稳斜段的长度,以补偿第一段造斜率与设计的偏差,使井眼轨迹准确地钻达目标点的垂深。
③ 多造斜率剖面
多造斜率剖面(或分段造斜剖面),造斜曲线由两个以上不同造斜率的造斜段组成,是一种比较复杂的井身剖面。
在水平 4 井攻关和试验过程中,我们根据胜利油田地质地层特点,采用了三段增斜方法设计水平井井眼轨道,在实钻过程中可以充分发挥动力钻具和转盘钻具各自的优势,提高钻井速度。将常规设计的稳斜井段改为第二增斜段,通过调整该段的造斜率和段长,同样可以弥补钻具造斜能力的偏差,而且还可以实现用一套钻具组合完成第一造斜段的通井和第二造斜段的钻进,并减少了起下钻次数。转盘增斜钻具组合与稳斜的刚性钻具组合比较,其刚性小,摩阻力小,不易出新井眼,有利于井下安全。采用转盘钻具钻进可以使用较大的钻压以提高机械钻速,缩短钻井周期。
2、 广义的调整井段概念
据国外水平井资料介绍,在多数水平井设计中习惯采用具有稳斜调整段的剖面,用稳斜段作为轨迹控制的调整井段。通过实践我们认识到,水平井的调整井段还有更为广泛的含义。
首先,我们知道,目的层入靶点位置的准确性和目的层厚度是影响水平井中靶的重要因素之一。如何利用稳斜调整井段来提高中靶精度,对目的层是薄产层的水平井尤为重要。由于在井斜角较大时,增斜率的偏差主要影响水平位移,而对垂深的影响很小,可以在大井斜角度下提高垂深的精度。因此,在入靶前的大井斜角井段增加一稳斜调整段,既可调整垂深精度,又有助于及时辨别地质标准层,以便及时准确地确定目的层入靶点的相对位置。
其次,由于目前的硬件条件不十分完善,在钻中半径水平井的两趟动力钻具组合井段之间选择一调整井段,采用柔性的转盘增斜钻具组合来钻进,不仅可以钻出较小的造斜率井段以缓解第一和第三段造斜率,满足对井眼轨迹控制的需要,而且对改变井眼的清洁状况、防止出新眼都具有十分重要的作用。
因此,调整井段的广义概念不仅是调整井眼轨迹,同时可以调整钻井过程中井眼的清洁净化状况;不仅调整井眼轨迹的中靶精度,还可根据地质要求及时调整目的层入靶点的相对位置;不仅可以是稳斜井段,还可以是适当造斜率的增斜井段。
四、水平井待钻井眼轨迹的现场设计预测模式
在水平井井眼轨迹的控制过程中,由于地质因素、钻具的造斜能力、钻井参数等发生变化,往往使实际的造斜率与设计或理论造斜率不同,或者由于地质设计目的层发生变化等,这都需要根据实钻情况在现场随时预测待钻井眼的钻进趋势,及时调整和修改设计方案,采取相应措施。
现场待钻井眼的设计和预测,在不同的条件和具有不同的中靶要求下具有不同的计算模式,但水平井待钻井眼轨迹设计和预测的目的都是要计算在一定前提条件下钻至入靶窗口时的垂深、投影位移、井斜角和井斜方位角是否合符要求(也即控制实钻轨迹点的位置和矢量方向在设计精度范围内中靶)。
对设计的二维剖面水平井,控制井眼轨迹的中心任务是控制其造斜率Kα(也即控制剖面曲率半径 Rv),中半径水平井更是如此。在这类水平井中虽然控制方位变化率也是非常重要的,但通过我们的现场实践和分析比较后认为有下列几方面的原因,在待钻井眼轨迹现场设计预测时可以先不考虑方位变化率 KФ,待造斜率 Kα设计完成后(由 Kα=5730/Rv 求得),再根据所需方位变化量△Ф求出待钻井眼的方位变化率KФ,或求出单位水平投影位移的方位变化量 KvФ。
① 造斜率 Kα 远比方位漂移率 KФ高,Kα 非常接近井眼曲率 K(即狗腿严重度),因而在作待钻井眼轨迹设计时可以先忽略KФ。
② 一般在大井斜角情况下的井斜方位角变化很小,趋于稳定。
③ 在以动力钻具为主控制井眼轨迹时,随时可以修正调整方位角Ф。
④ 入靶窗口和靶区往往对横距 △d 的要求范围较大,因而对方位角Ф 的允许误差范围 △Ф 也较大。
因此,我们所建立的待钻井眼设计模式主要以设计 Rv 为主,对待钻井眼的三维设计和预测,我们也建立了相应的设计预测模式。 。
2)、目前钻井现场常用的定向造斜方法
随着定向井钻井技术和测量仪器的发展,定向造斜的方法也不断向着更科学更精确的方向发展变化,从最早使用的转盘钻井定向钻进,发展到目前的井底动力钻具定向钻进,从地面定向法,经过氢氟酸井底定向法、磁力测斜仪井底定向法、有线随钻测斜仪定向法发展到今天的MWD随钻测斜仪配合动力钻具的导向钻井系统。

Ⅷ  大位移钻井技术

大位移钻井技术是20世纪80年代后期在国外逐步兴起的一项钻井新技术。90年代末,中国海洋石油将这项新技术成功用于开发边际油田和一般油田,以减少生产平台建设费用。

所谓大位移定向井是指水平位移与垂直深度之比大于2的定向井,通常比值接近2的定向井也称为大位移井。大位移钻井技术是在定向井技术基础上发展起来的。

我国海上石油从1968年开始在渤海湾钻丛式定向井。当时定向工具是涡轮钻具+弯接头+扶正器,地面钻具划线法人工计算定向。造斜段每钻一个单根或立柱起钻电测井斜和方位,精确度低、效率低、风险大。造斜达到设计最大井斜后才改用稳斜钻具钻进。1968~1975年运用这套原始技术在渤海多座平台上钻定向井数十口,使当时海洋丛式井钻井技术在国内处于领先水平。

1976年从国外引进了单点照相测斜仪和戴纳(DYNA)井下动力螺杆钻具,从此由井下定向代替了地面定向,提高了定向精度和钻井效率,使定向钻井技术走上了一个新阶段。

1979年运用新的定向工具在渤海8号平台上钻定向井12口,平均井深3321m,最大水平位移1184m,平均建井周期55天,创造了国内新水平。

1980年中国海油对外合作后进入了大规模油田开发期,陆续引进先进的定向工具。1982年渤海埕北油田定向井使用戴纳和纳威(NAVI)钻具,有缆随钻测斜仪(DOT),进一步提高了钻井效率。埕北油田A平台28口定向井,平均井深1857m,平均建井周期17.37天。

1985~1989年先后引进有线随钻测斜仪 SST、电子多点测斜仪、抗磁性干扰测斜仪(SRD)、陀螺测斜仪(BOSS)、无缆随钻测斜仪(MWD)等先进仪器和戴纳及纳威钻具,使定向工具达到国际水准。并对定向钻井人员进行国内外培训,使海洋定向井技术进入现代化水平。至90年代后期,在涠洲10-3、渤中28-1、锦州20-2、绥中36-1等油气田完成定向井数百口,其中不少井为大斜度井和较大位移井。1991~1992年还分别钻成渤中28-1-N6H和涠洲11-4-A13两口水平井。

1993年海油南北定向井专业队伍合并,成立海洋定向井技术服务公司,进一步加强了技术引进和开发工作。先后引进导向马达(AKO)、Land mark定向井应用软件,对导向钻井技术、三维大位移钻井技术、水平井技术等进行攻关,并取得突破性进展,使导向钻井技术必备要素成龙配套。

首先完善了导向钻具组合,PDC钻头+可调弯角大功率导向马达(AK0)+随钻测斜仪(MWD),其次应用定向井计算机专用软件包,同时培养了一批有经验、又掌握现代技术的定向井工程师,为导向钻井技术的应用打下了基础。从1995年起导向技术在优快钻井和密集型丛式钻井中发挥了明显作用。

在导向钻井技术成熟应用的基础上,又引进LWD,使导向技术进入地质导向钻进阶段,在平湖气田等10多口水平井钻井中应用效果良好。

有了成熟的导向钻井技术,也就为大位移钻井技术打下了坚实基础,使海洋石油大位移钻井技术一上手就旗开得胜,取得一个接一个的胜利(表11-1)。

表11-1中国海洋石油大位移井统计表(至2002年)

)套管采用套管漂浮接箍,顺利通过大斜度井段和水平井段,下入预计井深。

b.水平井尾管送入技术:适当扶正器,加重钻杆放在靠近直井段管柱上,以便增大轴向力推动尾管下行。

c.水平井段裸眼砾石充填技术。

d.筛管砾石充填完井技术。

e.套管射孔完井技术。

(六)堵漏技术

采用碳酸钙封堵漏层,可酸洗或油溶解堵。

三、大位移钻井技术成果显著

a.经济效益可观。钻大位移井开发油田的投资比常规开发方案低,可取得显著经济效益。西江24-1油田5口大位移井,截止2002年6月底已产原油256.3×104m3,总收入3.3亿美元,累计获净现金流1.2亿美元,政府税收1.5亿美元。预计经济生产寿命可至2008年,可累计产油2810桶,获净现金流2.3亿美元,政府税收可达2.7亿美元。

b.可为社会做出重大贡献。边际油田在我国海域已发现的油田中占有相当比重,大位移井技术为今后高效开发海洋边际油田闯出了一条新路,将为国家增加大量可用油气资源。

c.结合大位移井钻井与完井工程实践,对大位移井的井身结构与套管柱优化设计、井下扭矩/摩阻的数值模拟与控制、井壁不稳定性评估与控制、井眼轨迹导向控制与可视化、钻头选型、钻井液及井下工具等方面取得了创新性研究成果,形成了一套具有中国海油特色和国际先进水平的大位移井钻井与完井工艺技术,标志着我国运用高新技术开发海上边际油田进入了世界先进行列。

d.扩大了中国海洋石油在国内外的影响,并提高了声誉。围绕西江大位移钻井与完井工程,先后两次在广东省蛇口组织召开了来自世界十几个国家、几十家油公司及技术公司近百人的“大位移井技术国际研讨会”,表现了世界石油界对西江24-1油田大位移井开发成功的肯定及对技术成果的重视,产生了良好的效应。

Ⅸ 定向钻施工工艺

盾构:开一个井,进行加固,在井内组装盾构机,盾构机前面是刀盘切削土壤,土进入盾构机然后运输出井。继续前进到达接收井。这种方法对环境影响小,噪声小,不影响地面交通。一般用于地铁施工,别的工程比如穿越个小河,是不可能用到盾构的(个人理解)。顶管和定向钻到是可能用于穿越,按字面理解就行了。

Ⅹ 钻井技术是什么

为满足不同条件的钻井需要,优质、安全、快速钻进,钻井工作者几十年来研究了各种钻井技术,现已发展成为以喷射钻井及优化参数钻井为核心的钻井综合配套技术。下面重点介绍喷射钻井技术、优选参数钻井技术、直井防斜技术、定向井技术、钻井取心技术等。

一、喷射钻井技术

喷射钻井技术在我国是从1978年开始试验并在生产上逐渐推广的。喷射钻井的实质就是钻井水力参数的优化。喷射钻井的一个显著特点是从钻头喷射出来的钻井液射流具有很高的喷射速度,井底得到较大的冲击力和水功率,从而及时清除井底岩屑,破碎井底岩石,提高钻井速度。

(一)射流对井底的水力作用

1.射流特性

图4-7射流结构

射流是指通过管嘴或孔口,过水断面周界不与固体壁接触的液流,见图4-7。射流出喷嘴后,由于摩擦作用,射流流体与周围流体产生动量交换,带动周围流体一起运动,使射流的周界直径不断扩大。射流纵剖面上周界母线的夹角称为射流扩散角(α)。α越小,则射流的密集性越高,能量就越集中。在射流中心,各点的流速等于出口流速(vjo)部分称等速核。在射流的任一横截面上,从等速核向外速度很快降低,到射流边界上速度为零。超过等速核以后,射流轴线上的速度迅速降低。当射流撞击井底后,形成井底冲击压力波和井底漫流。L为射流轴线上某点距出口的距离,vjm为距出口L处的最大射液速度。

2.射流对井底的清洗作用

射流撞击井底后形成的井底冲击压力波和井底漫流是射流对井底清洗的两种主要形式。

(1)射流的冲击压力作用。射流撞击井底后形成的冲击压力波并不是作用在整个井底,而是作用在如<ahref="">图4-8</a>所示的小圆面积上,井底岩屑所受冲击压力极不均匀。极不均匀的冲击压力使岩屑产生一个翻转力矩,从而离开井底,如<ahref="">图4-9</a>所示,这就是射流对井底岩屑的冲击翻转作用。

(2)漫流的横推作用。射流撞击井底后形成的漫流是一层很薄的高速液流层,具有附面射流的性质。这层具有很高速度的井底漫流,对井底岩屑产生一个横向推力,使其离开原来的位置。因此,井底漫流对井底清洗有非常重要的作用。

图4-18取心工具组成示意图

1—取心钻头;2—岩心爪;3—内岩心筒;4—外岩心筒;5—扶正器;6—回压阀;7—悬挂轴承;8—悬挂装置

取心钻头是钻进地层、形成岩心的关键工具。取心钻头可分为刮刀式取心钻头、牙轮取心钻头、金刚石取心钻头三种。

岩心筒是取心工具的重要部分之一,包括内岩心筒、外岩心筒、扶正器、回压阀及悬挂总成等部件。外岩心筒为优质无缝钢管制成,上接钻柱,下接取心钻头。内岩心筒的作用是在取心钻进时接受、储存和保护岩心。

悬挂总成包括悬挂轴承组和悬挂装置。

岩心爪的作用是在取心钻进结束后用以割断岩心,并在起钻时承托已割取的岩心以防其脱落。

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919