中学数学新课程标准
A. 初中数学学习的《课程标准》
第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域。研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,伺时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1、义务教育阶段的数学课程应突出体现基础性。普及性和发展性,使数学教育面向全体学生,实现。
——人人学有价值的数学; ——人人都能获得必需的数学; ——不同的人在数学上得到不同的发展。
2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3、学生的数学学习内容应当是规实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4、数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5、评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6、现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一)关于学段
为了体现义务教育阶段数学课程的整体性,(全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段。
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性月标动词,从而更好地体现了(标准)对学生在数学思考、解决问题以及情感与态度等方面的要求。
知识技能目标
了解 (认识) 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标
经历(感受) 在特定的数学活动中,获得一些初步的经验。
体验(体会) 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
(三)关于学习内容
在各个学段中,《标准》安书了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式。
(四)关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议。供有关人员参考,以保证《标准》的顺利实施。
为了解释与说明相应的课程目标或课程实施建议,《标准》还提供了一些案例,供参考。
第二部分 课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
●获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
●初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
●体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
●具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
具体阐述如下:
知识与技能 ●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。
●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。
●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考 ●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。
●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
●经历运用数据描述信息、作出推断的过程、发展统计观念。
●经历观察、实验、猜想。证明等数学活动过程,发展合情推理能力和初 步的演绎推理能力、能有条理地、清晰地阐述自己的观点。
解决问题 ●初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识 和技能解决问题,发展应用意识。
●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践 能力与创新精神。
●学会与人合作,并能与他人交流思维的过程和结果。
●初步形成评价与反思的意识。
情感与态度 ●能积极参与数学学习活动,对数学有好奇心与求知欲。
●在数学学习活动中获得成功的体验。锻炼克服困难的意志,建立自信心。
●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
●形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
第三学段(7~9年级)
知识与技能 ●经历从日常生活中抽象出数的过程,认识万以内的数、小数、简单给分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
●经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对称现象,能初步描述物体的相对位置、获得初步的测量(包括估测)、识图、作图等技能。
●对数据的收集、整理、描述和分析过程有所体验、掌握一些简单的数据处理技能;初步感受不确定现象。 ●经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意 义。掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。
●经历收集、整理、描述和分析数据的过程,掌握一些数据处 理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
●经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
●经历探索物体与图形基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图、掌握基本的识图、作图等技能;体会证明的必要性、能证明三角形和四边形的基本性质,掌握基本的推理技能。
●从事收集、描述、分析数据,作出判断并进行交流的活动,感受抽样的必要性,体会用样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率。
数学思考 ●能运用生活经验,对有关的数字信息作出解释,并初步 学会用具体的数描述现实世界中的简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。
●在教师的帮助下,初步学会选择有用 信息进行简单的归纳与类比。
●在解决问题过程中,能进行简单的、有条理的思考。
●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
●能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系。
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。
●能收集、选择、处理数学信息、并作出合理的推断或大胆的猜测。
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。
●体会证明的必要性。发展初步的演绎推理能力。
解决问题 ●能在教师指导下,从日常生活中发现并提出简单的数学问题。
●了解同一问题可以有不同的解决办法。
●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法、并试图寻找其他方法。
●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
●能结合具体情境发现并提出数学问题。
●尝试从不同角度寻求解决问题的方法并能有效地解决问题,尝试评价不同方法之间的差异。
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。
●通过对解决问题过程的反思,获得解决问题的经验。
情感与态度 ●在他人的鼓励与帮助下,对身边与数学有关的某些事物 有好奇心,能够积极参与生动、直观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。
●经历观察、操作、归纳等学习数学的过程,感受数学思 考过程的合理性。
●在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。
●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不 断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战 性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识、并愿意对数学问题进行讨论,发现错误能及时改正。
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。 ●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
●体验数、符号和图形是有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。
B. 中学数学新课程标准的总体目标是什么
你好,很荣幸回答你的问题。数学新课程标准提出的学科培养目标是:
中学数学课程的总的目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学上的提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我的回答你满意吗?
C. 初中数学,最新的新课程标准是哪个版本
重庆那边是人教版。。成都这边是北师大版,,两版教材内容学的顺序不一样而已。。反正都要学。。最新的应该也是这两版吧。。个人认为人教版的编排要好一些。河南那边啊。。差不多。。只要你搜了这两版的目录。。就算版本不一样,也都会学,不吃亏、、
满意请采纳,谢谢
D. 初中数学的新课标教学目标是什么
一、教学内容解析本节课是在学习了解了圆的一些相关概念的基础上利用圆的轴对称性探索垂径定理及其逆定理,然后根据对称图形的性质和推理证明的方法进行证明。通过本节课的学习,学生能通过折叠,体会圆的对称性,理解并掌握垂直于弦的直径的性质,经历感受圆的对称性在实际生活中的实用价值,增强学生应用数学和意识,发展为学生的思维能力。对垂径定理及其推论的学习,为下一节学习弧、弦、圆心角以及有关弦的计算和证明题有着非常重要的作用。二、教学目标设置知识和能力 1.探索圆的对称性,进而得到垂直于弦的直径所具有的性质。2.能够利用垂直于弦的直径的性质解决相关实际问题。过程和方法 1.在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程。2.进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神。情感态度价值观 使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。教学重点 垂直于弦的直径所具有的性质以及证明。教学难点 利用垂直于弦的直径的性质解决实际问题。教学准备 教师 多媒体课件学生纸、剪刀三、学生学情分析对于九年级学生而言,其实他们在第一、二学段已积累了一些对圆的认识,甚至也了解了圆的一些性质,也学过其它几何图形,经历过探究其它图形的学习过程,所以相对而言学习了解圆就有了一定的经验和能力,但是由于目前农村中学优生流失较为严重,大部分是中下游的学生,他们分折和探究问题的水平很低,因此在分折概括,推理论证垂径定理时是有一定困难的。四、教学策略分析以学生现有的经验知识为基础引入新课,让学生先观察几组以前尝过的对称图形,并了解它们的性质,然后让学生动手折叠圆,并观察得出圆的性质—轴对称性,再从圆是轴对称图形入手,根据轴对称图形的性质得出对称轴垂直平分对称点的连线,相对应的部分一定重合,即“垂直于弦的直径平分弦且平分弦所对的弧”,这里尽量再结合课件的演示,让学生在观察、探究、交流的过程中体会知识的形成。五、教学过程(一)复习旧知问题情境,激发学生兴趣师:观察下列几个图形,它们有何共同点?等腰梯形长方形等腰三角形用什么方法可以判断图形是轴对称图形?(引导出折叠的方法)(二)新课引入活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.(三)问题引申,探究垂直于弦的直径的性质活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等