课程标准双基
A. 简述你对当前数学课程标准所提出的“四基”的认识
《标准》对数学课程提出了四方面的基本目标:一是知识和技能;二是数学思考;三是问题解决;四是情感态度和价值观。
B. 高中数学教学中怎样有效落实“双基”要求
目前,《普通高中数学课程标准(实验)》(以下简称《课程标准》)已进入实验阶段。此《课程标准》根据时代要求,对高中数学课程进行了新的设计,从理念、内容到实施都有较大变化,最突出的特点就是体现了基础性、选择性,明确提出:高中教育属于基础教育,高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。为此,提出“要与时俱进地认识‘双基’”,一方面要继续发扬我国数学教学一向重视基础知识教学、基本技能训练和能力培养的传统,另一方面,要重新审视“双基”的内涵,形成符合时代要求的新的“双基”。
在新阶段的高中数学教学中,什么是基础?应当打好什么样的基础?用什么方法来打好基础?这些问题是我们教育工作者在新课程实施中必须搞清楚的。本文就这些方面做一探讨。
一、对“双基”的正确定位
按照新课程的理念,基础知识与基本技能要与时俱进。那么,今天怎样来正确定位“双基”?笔者认为,对“双基”的界定应考虑基础性和发展性两个方面。
(一)注意课程目标的新变化
《课程标准》对数学课程目标提出了三个层面的要求。第一个层面为知识教育层面,强调学生在获得必要的基础知识、基本技能的同时,要了解它们的来龙去脉,体会其中所蕴涵的数学思想和方法;第二层面为学生数学素质与能力的培养教育层面,除了提出要提高学生的数学思维能力(包括空间想象、抽象概括、推理论证、运算求解、数据处理五项基本能力),还提出要提高学生数学地提出问题、分析和解决问题的能力,数学表达和交流的能力,独立获取数学知识的能力,发展学生的数学应用意识和创新意识,能够对客观事物中的数量关系和数学模式作出思考和判断;第三层面为非智力品质培养教育层面,提出要激发兴趣、树立信心,形成实事求是的科学态度和锲而不舍的钻研精神,形成批判性思维习惯,认识数学的科学价值和人文价值,树立辩证唯物主义世界观。这都与以前有较大不同。
(二)注意知识界定、能力提法上的新变化
《课程标准》对数学的定义更为精辟,指出“数学是研究空间形式和数量关系的科学”,与原来的阐述“数学是研究现实世界空间形式和数量关系的科学”相比较,体现了对数学研究对象的新认识和新的界定,使超现实的形式与关系也正在成为数学研究对象的一部分。数学基础知识不再局限于数学中的概念、性质、法则、公式、定理等,由此反映出来的数学思想方法也界定在基础知识之中,它是显性知识中蕴涵着的隐性知识。作为基础知识的学习,其思想方法的学习与掌握显得更为重要。能力提法上,在原来基础上提出了新的能力培养要求。在注重提高学生的空间想象、直觉猜想、归纳类比、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等数学思维能力的同时,强调要培养学生数学地提出、分析和解决问题的能力,数学表达和交流的能力,获取数学新知识的能力,数学探究能力,发展数学应用和创新意识,并希望能上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。
(三)注意教学内容的新变化
根据《课程标准》新理念,高中数学课程应具有多样性和选择性,使不同的学生在数学上得到不同的发展。故在课程的划分、内容的确定、结构的调整等方面都有很大变化。数学课程分为必修和选修,必修课程由五个模块组成。五个模块内容覆盖了高中阶段传统的基础知识和基本技能的主要部分,不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。部分保留内容的结构也发生了变化,如对解析几何、立体几何、三角恒等变形等做了整合与适当精简:增加了向量、算法、概率等基础内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能,口头、书面的数学表达也列为学好数学的基本功;删减了繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容。设置了数学探究、数学建模、数学文化内容,要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容中,把数学文化内容与各模块的内容有机结合,并融情感、态度、价值观等方面的内容于课程中。
(四)根据变化定位
上述变化表明,随着时代与数学的发展,高中数学的基础知识和基本技能已经发生变化。所谓“双基”,应该是多种要素的有机整合,是学生终身发展必备的基本素养。基础扎实不仅是指知识数量的堆积,“双基”也不单纯是知识和技能,创新意识、应用意识、实践能力、用数学方法思考判断的能力、人生规划能力、科学精神、批判性思维习惯、创业意识等等也是基础,甚至是更重要的基础。还有如浓厚的学习兴趣、旺盛的求知欲、积极的探索精神和情感态度、搜集和处理信息的能力、获取新知识的能力、交流与合作的能力等等,更是为学生全面打好基础的基本内涵,是基础的基础。它们与知识、技能的学习融合在一起,才能互相促进,形成符合时代要求的新的“双基”。
二、打好“双基”的思路与几个关系
在新阶段的高中数学教学中,怎样为学生打好“双基”?鉴于“双基”内涵的变化,其方法、思路也应随之变化。必须要明确高中数学课程改革的思路,改变以前我国数学教学中对学生懂得数学的价值、认识数学的思想方法、增强学习自信心以及学会数学地交流重视不够的情况,注重知识与技能、过程与方法、情感态度与价值观这三维目标的整合,注重时代、社会对数学学科的要求,注重学生对社会的适应性,将知识的学习、能力的培养、情感的形成融为一体,真正为学生的终身发展打好基础。尤其要注意处理好以下几方面的关系。
(一)正确处理“过程”与“结果”的关系
要使学生打好“双基”,必须既重视教学的过程也重视教学的结果,不能让一种倾向掩盖另一种倾向,或从一个极端走向另一个极端。因为,没有过程的结果是没有体验、没有深刻理解的结果,不追求结果的过程是缺乏价值和意义的过程。
一是要努力揭示数学的本质,要返璞归真,强调对数学基本概念和基本思想方法的真正理解和掌握。数学教学“要讲推理,更要讲道理”,应通过典型例子的分析,引导学生经历从具体实例抽象出数学概念的过程,让学生理解数学基本概念与结论的来龙去脉,从而体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的艺术形态转化为学生易于接受的教育形态。例如对导数概念的理解,可通过实例,让学生经历从平均变化率过渡到瞬时变化率的过程,通过求瞬时变化率让学生了解导数概念的实际背景和意义,体会导数的思想及内涵。一些核心概念和基本思想(如函数、向量方法、空间观念、数形结合思想、随机观念、算法等)要贯穿高中数学的始终,帮助学生逐步加深理解。尤其是蕴涵在显性知识中的思想方法,尽管是隐性知识,却是打开数学宝库的“金钥匙”,一定要注意揭示和总结。二是要注意适度形式化。形式化是数学的基本特征之一,在数学教学中,学习形式化的表达和应用也是一项基本要求,比如对一些数学法则、公式、结论的应用,应当使学生熟练掌握。这种形式化是在学生亲身经历了对有关数学概念和思想方法的体验,并在此基础上进行抽象概括、总结归纳,而掌握的规律性。如果学生只限于记忆形式化的表达,而忽视了对数学本质的认识,就会将生动活泼的数学思维活动淹没在形式化的海洋里。三是要重视思维训练和基本技能训练。选择适当的形式,让学生在学习过程中不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、运算求解、演绎证明、反思与建构等思维过程,使思维的广阔性、严密性、发散性、深刻性、批判性、独创性等品质得到充分发展,以形成理性思维,学会批判性思考。同时,要重视运算、作图、推理、数据处理等基本技能的训练,使学生提高应用数学的能力。四是要注意知识间的联系,提高学生对数学整体的认识。因为新课程是以模块和专题的形式显现的,所以要特别注意沟通各部分内容之间的联系,例如,立体几何教学时应注意用向量方法(代数方法)处理有关问题,不等式的教学要关注它的几何背景和应用,三角恒等变形应加强与向量的联系,还有向量与代数、数与形的联系,算法思想在有关内容中的渗透和应用,等,从而使学生对数学学习的结果有一个较高层次的认识。
(二)正确处理“打好双基”与“力求创新”的关系
基础与创新是学习数学过程中不可或缺的两个方面,也是《课程标准》中充分强调的。有人认为这是矛盾的两方面,培养创新精神会影响“双基”。其实不然,这种想法仍是源于对“双基”认识的不正确。从社会发展来看,创新精神是现代人必备的基本素质之一,当然也是“双基”的内容。我们要在打好基础的同时激发学生的创新潜能,自始至终体现创新精神,这二者不是割裂的,而是一致的。
为此,必须为学生提供“提出问题,探索思考和实践应用”的空间。一是要改善教与学的方法,倡导积极主动、勇于探索的学习方式。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,还应倡导自主探索、独立思考、动手实践、合作交流、阅读自学等学习数学的方式。对不同的内容可采用不同的教学和学习方式。例如收集资料、调查研究、讨论交流等都可用以充分发挥学生学习的主动性,使学习过程成为在教师引导下的创新过程。教师的讲授虽是重要的教学方式之一,但要注意必须关注学生的主体参与,包括思维的参与和行为的参与。要创设适当的问题情境,鼓励学生发现数学的规律和问题解决的途径。二是要注重创新思维、数学应用意识的培养。教师在教学中应根据不同的内容、目标以及学生实际情况,给学生留有适当的拓展、延伸的空间和时间,对有关问题做进一步探索研究。例如,反函数概念、欧拉多面体定理、连分数等都可作为拓展、延伸的内容。还应精心设置问题启发学生积极思考,让学生经常处于“跳一跳才能摘到桃子”的境地。同时要注重发展学生的应用意识和实践能力,以学生的现实生活和社会实践为基础挖掘教学资源。一方面通过丰富的实例引入数学知识,例如,在每章开头都可提出一个有很强现实生活背景的实际问题,并且只提出问题不给答案,制造悬念以激发求知欲。事实上,函数、导数等抽象的概念都可从实例导出。另一方面要引导学生应用数学知识去发现并解决实际问题,例如,运用函数、统计、导数等知识直接解决体育馆最大容积问题、商品营销策略问题等。还应通过数学建模活动引导学生从实际情境中发现问题并归结为数学模型,尝试用数学知识和方法去解决,着眼于逻辑知识应用化,使学生认识到数学与我有关,与实际生活有关,数学是有用的。这不仅能培养创新意识,也打实了基础。三是大力开展数学探究活动。问题是数学的心脏,教师要经常提出有研究或探究价值的问题,通过对数学问题的探究,把接受式的学数学的过程转化为对问题的探索过程,这就使得知识的形成过程得到了重视,使模仿、记忆为主的学习变为活泼的、有个性的问题求解经历,变为发现和创造的经历,并且数学的工具作用和思维训练功能在问题解决过程中能获得统一。将知识转化为问题更容易促使学生自主探索与合作交流,实现不同的人在数学上得到不同的发展,这是培养创新精神、打好基础的有效途径。
(三)正确处理“打好双基”和发展情感、价值观的关系
《课程标准》还有一个重要理念,就是要融情感、态度、价值观等方面的内容于课程中。事实上,情感、意志在人的成长中起着动力作用,承担着定向、维持、调节等任务。《基础教育课程改革纲要(试行)》也明确提出:“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确世界观的过程。”可见,打好“双基”与激发学习兴趣、形成积极主动的学习态度和崇尚数学思考的理性精神、树立辩证唯物主义世界观是完全一致、相辅相成的,学生学习情感与正确价值观的形成也是基础的构成部分,在教学中应把知与情融为一体。
一是要让学生充分体会数学的文化价值。数学是人类文化的重要组成部分,教学中应引导学生初步了解数学学科与人类社会发展之间的相互作用,比如结合课程内容介绍一些对数学发展起重大作用的历史事件:欧几里得建立公理体系的思想方法对人类理性思维、数学与科学发展的重大影响;笛卡儿创立的解析几何,牛顿、莱布尼兹创立的微积分,以及它们在文艺复兴后对科学社会、人类思想进步的推动作用;计算机的产生和对社会进步的作用;等等。二是要多介绍数学家的创新精神和奋斗拼搏史,充分展示数学家为真理而献身的伟大人格和崇高精神,树立学习榜样。三是要创设良好的数学情境,努力为学生营造成功的环境。选题要注意可行性和刺激性,为不同学生设计不同要求的练习,让不同的学生学不同的数学,学有价值的数学,引导学生知难而上,又都有成功的机会,个性得到张扬,从而树立学习信心。四是严格要求,以数学本身内含的科学思想体系来引导学生积极探索,养成实事求是、认真勤奋、一丝不苟的学习习惯和勇于克服困难、坚忍不拔的良好学风。要注意的是:数学文化的学习、情感的培养等,应主要结合教学内容逐渐渗透,要生动、有趣、自然,在潜移默化中使学生的知与情共同得到发展。
三、新“双基”对教师的新要求
显然,《课程标准》下的“双基”已具有更丰富和更具时代特征的内涵,打好“双基”比原来更为困难,对教师也提出了新的要求。因为教师是新课程的实施者,是新课程研究、建设和资源开发的重要力量,所以,能否打好“双基”,教师是关键。笔者认为,作为教师必须注意以下几个方面。
(一)转变观念,树立新理念
通过学习要充分认识自己在数学课程改革和打好基础中的角色和作用。教师不仅要做知识的传播者,而且要做学生学习的引导者、组织者和合作者,按“让不同的学生学习不同的数学,在数学上获得不同的发展”的理念,给学生留下发展的空间,根据学生的不同水平、不同志趣和发展方向给予具体指导,使知识与技能、过程与方法、情感态度与价值观这三维目标有机整合,使学生的基础与素质得到全面发展。
(二)加强知识量的积累
标准新了,要求高了,教师第一次处于被学生选择的地位,必须要重新审视自己的知识结构和教学方法,努力学习数学的新理论、新知识,把握学术前沿动态,并拓宽相关学科的知识,实现多学科的沟通与融合。同时要改进教学方法,积极探索适合高中生数学学习的教学方式,时刻保持研究与创新的态度,以渊博的学识、扎实的基础知识和积极的人生态度来影响学生。
(三)改进评价的方法,建立科学的评价机制
教师的评价对学生来说,在一定意义上是指挥棒,应有利于学生“双基”的发展,有利于学生的全面成长。要正确地、全面地评价学生的数学基础知识和基本技能,注重对数学本质的理解和思想方法的掌握,注重对学生学习过程的评价(包括学习方法与态度),注重对学生各种数学能力的评价,还可根据学生的不同选择,实施促进学生发展的多元化评价。
总之,新课程改革要求我们必须重新审视“双基”的内涵,认真思考打好“双基”的方法与思路,只有这样,才能在新时期为学生的终身发展真正打实基础。
C. 国家数学课程标准中的“四基”指的是什么三能指的是什么
研讨内容: 1.? 《国家数学课程标准》已经把“双基”扩展为“四基”,即基础知识、基本技能,增加“基本数学活动经验”与“基本数学思想方法”。重视基础是为了发展,数学教育改革中坚持“四基”,不仅可以更好地促进学生发展,而且也更加突出数学的学科性质。三能:(一)运算能力(二)空间想象能力(三)逻辑思维能力其中逻辑思维能力应是分析,综合、比较、抽象、概括、转化等能力的综合体,数学能力的培养是在教学过程中完成的。因此,有效利用教学时间,合理、有序、有度培养数学能力,显得尤为重要。 2.数学“四基”之间的关系 关于数学“双基”的涵义非常丰富,可以有知识形态、教学形态与个体形态等三种表现形式[12].从教学的角度,邵光华教授与顾泠沅先生指出:“双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标.”[13]其中的“精讲多练”、“练中学”、“熟能生巧”等主要是围绕“演绎活动”而展开的,其目的是让学生获得形式化的结果知识——用数学术语或数学公式所表述的系统知识.基本活动经验则主要是指在数学基本活动中形成和积累的过程知识.由于在我国的数学教学中过分强调“演绎活动”而削弱甚至忽视了“归纳活动”,因此,基本活动经验更加强调关于归纳活动的经验.在数学学习过程中,“双基”与基本活动经验是相互依存、相互促进的,也是可以相互转化的,在二者的不断融合、多次的实际应用中,通过反思提炼而形成的一种具有奠基作用和普遍指导意义的知识经验便是数学基本思想.由此,我们可以给出数学“四基”的如下关系结构: 从知识的角度来看,“双基”是一种理性的、形式化的结果性知识,而基本活动经验则是一种感性的、情景化的过程性知识,它们各强调了数学知识的一个侧面,前者形成的是一种知识系统,而后者形成的是一种经验系统,二者的有机结合才能形成完整的数学知识结构.就方法而言,“双基”主要以演绎法为主,演绎法只是一种依据固定的前提(定义、公理、定理等),利用相对固定的推理程序(三段论),得出固定结论的方法,而结论的预测与发现,推理思路的探索与调整以及知识的实际应用等,靠演绎法是推不出来的,从这个意义上讲,“儿童不可能通过演绎法学会新的数学知识!” 关于“双基”的学习需要有一个意义建构的过程,此过程是以原有经验为基础的,又是从操作性的经验开始的,并且所建构的意义最终是以经验的形态储存学生的大脑当中的,就如著名教育家陶行知所作的关于人获得知识过程的嫁接树枝的比喻:“我们要有自己的经验做根,以这经验所发生的知识做枝,然后别人的知识才能接得上去,别人的知识方才成为我们知识的一个有机体部分.” 因此,“双基”只有通过经验化才能真正成长为学生的数学素养.相对于“双基”而言,“基本活动经验”是比较模糊的、不太严谨的,缺乏明晰的结构体系,尤其是那些没有经过加工的“原始经验”,含有许多主观的、片面的非本质因素,就像数学家克里斯戈尔所描述那样:“数学活动过程中所获得的知识总是不够精确的和片面的,其整体结构好像一片原始森林,或者说是交相缠绕的树枝.” 因此,要使“基本活动经验”更加确切、合理而有效,就需要经历一个概念化与形式化的过程,虽然,在问题解决的过程中,某些经验本身就具有很好的指导作用和实用价值,但毕竟数学知识本质上是追求严谨性与确定性的.经过概念化与形式化,“基本活动经验”就可以转化或融入到“双基”之中,不但使“基本活动经验”得到了升华,也使“双基”因为充满了学生的感受而获得了某种生命的活力. 数学活动经验是指学习者在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识.感性知识是指具有学生个人意义的过程性知识,也包括学生大脑中那些未经训练的、不那么严格的数学知识;情绪体验是指对数学的好奇心和求知欲、在数学学习活动中获得的成功体验、对数学严谨性与数学结果确定性的感受以及对数学美的感受与欣赏等;应用意识包括“数学有用”的信念、应用数学知识的信心、从数学的角度提出问题与思考问题的意识以及拓展数学知识应用领域的创新意识,而且应用意识是数学基本活动经验的核心成分 史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想.”[7] 关于数学基本思想,在以往的文献中有诸多论述.胡炯涛先生认为:“最高层次的基本数学思想是数学教材的基础与起点,整个中学数学的内容均循着基本数学思想的轨迹而展开.……‘符号化与变换思想’,‘集合与对应思想’以及‘公理化与结构思想’,它们构成了最高层次的基本数学思想.”[15]在中学数学教学中影响比较大的是任子朝先生提出的四种基本思想:数形结合的思想,分类讨论的思想,函数与方程的思想,化归的思想[16].然而,在众多的数学思想中起着奠基性、引领性作用的还应该是归纳思想与演绎思想.如“化归思想”,在探索化归的方向、发现问题的结论、寻找解决问题的途径时,主要运用的是归纳思想;在链接“中间问题”、整理和表述化归结果时,则需运用演绎思想,而且化归的主要策略——“一般化”与“特殊化”本身就是归纳思想与演绎思想的具体体现.从形成过程来看,演绎思想主要是在“双基”的形式化训练中练就的,而归纳思想则主要是在“基本活动经验”的不断积累中逐步孕育的.归纳思想与演绎思想是数学思想体系的两翼,二者的协同发展,才能使数学知识健康、和谐地成长为学生的智慧. 总之,数学基础知识、基本技能、基本活动经验与基本思想既是数学学习活动的核心内容与主要目标,也是学生数学素养最为重要的组成部分,它们共同构筑了学生的数学知识结构。
D. 数学课程标准的基本要求有什么变化
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念的变化:“三句”变“两句”、“6条”改“5条”
2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、课程理念中新增加了一些提法
要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。
五、“双基”变“四基”
2001年版的“双基”:基础知识、基本技能。
2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
一、“课程基本理念”的修改
1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”
二、“设计思路”的修改
1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。
2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。
三、“课程目标”的修改
1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。
2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。
3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。
4.规范了课程目标的若干术语。并在学段目标中使用这些术语。
四、“课程内容”(原“内容标准”)的修改
1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。
2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。
3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。
(1)删除的内容
▲在“数与代数”领域,删除了一些内容,例如:
①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)
②对有效数字的要求——“了解有效数字的概念”(实验稿P32)
③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)
▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:
①关于等腰梯形的相关要求(实验稿P39、P43)
②探索并了解圆与圆的位置关系(实验稿P39)
③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)
④关于镜面对称的要求(实验稿P41)
▲“统计与概率”部分删除的内容
极差、频数折线图等内容
(2)新增加的内容
▲“数与代数”中既有必学的内容,也有选学的内容
①知道|a|的含义(这里a表示有理数)
②最简二次根式和最简分式的概念
③能进行简单的整式乘法运算中增加了一次式与二次式相乘
④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等
⑤会利用待定系数法确定一次函数的解析表达式
以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:
*⑥解简单的三元一次方程组
*⑦了解一元二次方程的根与系数的关系
*⑧知道给定不共线三点的坐标可以确定一个二次函数
▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。
①会比较线段的大小,理解线段的和、差,以及线段中点的意义
②了解平行于同一条直线的两条直线平行
③会按照边长的关系和角的大小对三角形进行分类
④了解并证明圆内接四边形的对角互补
⑤了解正多边形的概念及正多边形与圆的关系
⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形
下面的要求是选学内容:
*⑦了解平行线性质定理的证明
*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧
*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等
*⑩了解相似三角形判定定理的证明
(3)在要求上有变化的内容(略)
4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。
五、“实施建议”的修改
“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。
六、“实例”的修改
增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。
七、增加附录
将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。
E. 2011数学新课标中“双基”变“四基”如何在教学中落实。
与2001年版相比,《数学课程标准(2011年版)》从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下: 一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。 2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。 二、关于数学观的变化 2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。 2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。 三、基本理念的变化:“三句”变“两句”、“6条”改“5条” 2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。 2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 “6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。 2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术 四、课程理念中新增加了一些提法 要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。 五、“双基”变“四基” 2001年版的“双基”:基础知识、基本技能。 2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。 六、四个领域名称的变化 2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。 2011年版:数与代数、图形与几何、统计与概率、综合与实践。 七、课程内容的变化 更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。 八、实施建议的变化 不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。 下面谈谈“双基”变“四基”如何在教学中落实。 (一)注重学生对基础知识、基本技能的理解和掌握 “知识技能”既是学生发展的基础性目标,又是落实“数学思考”“问题解决”“情感态度”目标的载体。 1、数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。 学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。 数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。 2、在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算,而且要知道相应的算理;对于尺规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由。 基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。 (二) 感悟数学思想,积累数学活动经验 数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。 例如,分类是一种重要的数学思想。学习数学的过程中经常会遇到分类问题,如数的分类,图形的分类,代数式的分类,函数的分类等。在研究数学问题中,常常需要通过分类讨论解决问题,分类的过程就是对事物共性的抽象过程。教学活动中,要使学生逐步体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程中如何认识对象的性质,如何区别不同对象的不同性质。通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想。学会分类,可以有助于学习新的数学知识,有助于分析和解决新的数学问题。 数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。 教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。例如,在统计教学中,设计有效的统计活动,使学生经历完整的统计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并利用这些信息说明问题。学生在这样的过程中,不断积累统计活动经验,加深理解统计思想与方法。 “综合与实践”是积累数学活动经验的重要载体。在经历具体的“综合与实践”问题的过程中,引导学生体验如何发现问题,如何选择适合自己完成的问题,如何把实际问题变成数学问题,如何设计解决问题的方案,如何选择合作的伙伴,如何有效地呈现实践的成果,让别人体会自己成果的价值。通过这样的教学活动,学生会逐步积累运用数学解决问题的经验。
F. 请你说说课程标准修订的两大标志性变化是什么并举例说明在教学中你是如何发展
第一个大的变化是由双基变四基。双基是指基础知识、基本技能,现在增加了两个,就是基本思想方法、基本活动经验。。现在的四基是指:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
第二个大的变化是由双能变四能。过去仅仅强调的分析和解决问题双能,现在增加了两个,就是增强发现问题和提出问题的能力。现在的四能是指:分析问题的能力、解决问题的能力、发现问题的能力、提出问题的能力。《课标》修订中在继承我国数学教育注重“双基”传统的同时,突出了培养学生创新精神和实践能力,提出了使学生理解和掌握“基本的数学思想和方法”,获得“基本的数学活动经验”。在强调发展学生分析和解决问题能力的基础之上,增加了发现和提出问题能力的课程目标。
G. 如何基于"双基"实现多元培养目标
一、提高目标意识,落实课程标准
以《画家和牧童》为例,让我们认识到:低年级语文教学,识字为基础,词句训练扎实,整个教学中,可以看到徐老师紧紧把握目标,深入落实课程标准,真正做到基于课程标准的教学。
原有教学用书上《画家和牧童》的教学目标
1、会认13个生字,会写12个生字。
2、正确、流利、有感情的朗读课文,体会画家和牧童的优秀品质。
3、懂得要敢于挑战权威,也要谦虚谨慎。
树立一个大观念,基于课程标准的教学修改学习目标为:
1.自主认读生字,写“抹”等三个生字。
2.正确流利地读课文,体会不同语气。
3.多种形式理解词语,联系上下文理解“著名、惭愧”等词语。4.理解并学会运用“一……就……”说话。
5.结合插图理解谦虚谨慎,敢于挑战权威。
原定教学目标主要立足于教师教的角度,从知识、能力、情感三方面提出教学过程应该达到的目标,仅仅解决了“教什么”的问题,而“怎么学到”、“学到什么程度”这样的学习目标没有体现出来。修改后的目标关注学习的主体---学生,侧重学习能力的培养和学习水平的要求,如目标3关注的是学生能够通过品悟重点词句来理解准确用词在文章表情达意上的重要作用;明确了学生学习语文知识的方法—积累随文学习必要的语文知识,不做硬性灌输,而是需要通过对文章语言文字的品味、揣摩、涵泳,自然而然地受到熏陶,在学习中实践,在实践中学习。就像我们品味美食,用心地去感受食物带给我们的享受,而食物所具有的营养,就在我们品尝时自然而然地被吸收了。
二、突出训练意识,扎实培养学生“双基”
牟主任特别引用了2011年版的语文课程标准中对语文课程性质所下的界定:“语文是一门学习语言文字运用的综合性、实践性的课程。”对于双基,就是基础知识和基本能力,基础知识,如上述学习目标中的“一……就……”说话。基础知识和能力不是孤立存在的,要实现扎实训练,首先要找准训练点,如何知道孩子是否学会,就要设计当堂达标训练,真正落实孩子的主体地位,让学生充分地动起来,动手、动脑,通过语文综合性学习活动来培养听说读写的综合能力。“在大量的实践中接触大量的语文材料”,这是一条自然的途径,对有些学生来说,还可能是一条主要的途径。弗赖依说:文学知识“其中一部分学生在学习时不知不觉地学了,但是它的主要原则我们仍然不知道。”在母语学习中,带有自然学习性质的语文实践活动,价值更不能小视。
《语文课程标准》中的目标,最终指向学生在听说读写中发挥作用的良好的感。良好的感,或者是学生在自主的语文实践中养成的,或者是由教师所设计的潜藏着语文知识的实践活动所促成的,或者是来源于识转化为感的语文实践。
课标指出:“语言文字是人类最重要的交际工具和信息载体,是人类文化的重要组成部分。”语言文字的运用,包括生活、工作和学习中的听说读写活动以及文学活动,存在于人类社会的各个领域。而语文课程就是要引领学生学习语言文字的运用,并为学生学习其它课程打下基础,这就决定了语文课程的综合性和实践性。让学生在言语实践中学习语言,在文字运用中学习文字,这应该是学习语文的的基本途径。
作为语文课程的实施者执行者,我们应该努力去学习理解内化课标要求,找准训练点,夯实基础知识,不忘培养能力,根据学段特点,不断警醒自己:指导学生学习语言文字的运用。力求到达相应的程度。
H. 对《义务教育数学课程标准》实验稿(2001)与2011年版比较研究!应该怎么去分析比较!侧重点!
【新旧课标比较】
与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:
数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、 基本理念“三句”变“两句”, “6条”改“5条”
2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、理念中新增加了一些提法
要处理好四个关系
数学课程基本理念(两句话)
数学教学活动的本质要求
培养良好的数学学习习惯
注重启发式
正确看待教师的主导作用
处理好评价中的关系
注意信息技术与课程内容的整合
五、“双基”变“四基”
2001年版: “双基”:基础知识、基本技能;
2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。
并把 “四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想, 积累数学基本活动经验。
六、四个领域名称的变化
2001年版:数与代数 、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
I. 昆明第一中2020届高中新课标高三第三次双基测试理综合试卷的答案
昆明市第一中学不挂网公布此类信息,
建议直接询问你的语文老师。
好好学习,天天向上。
只要用心去学,你就是最好的。
金猴献瑞,吉星临门。
祝你学业进步,马到功成。
J. 小学数学课程标准2011如何把双基发展为四基,结合教学实际谈谈你的看法
四基指的是:基础知识、基本技能、基本思想方法和基本的数学活动经验。强调四基并不是说每个知识的教学都必须按照“四基”一项项的进行设计,缺一不可。以《9加几》为例,双基目标就是使学生能够用“凑十法”正确的计算9加几的题目。在理解凑十法的时候,引导学生用摆小棒、拨计数器等方法进行操作,就是借助数学活动经验达成了学生对知识的深层理解。