大数据分析教学课程
⑴ 大数据课程需要什么基础
学科知识:从数据分析涉及到的专业知识点上看,主要是这些:
(1)统计学:参数检验、非参检验、回归分析等
(2)数学:线性代数、微积分等
(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助
(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了
(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据,这种提取数据分析原材料的能力是每个数据从业者必备的。
⑵ 大数据的课程都有哪些
大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大专数据的课程内容属,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。
⑶ 大数据培训课程大纲要学什么课程
课纲不一样,看是大数据开发还是大数据分析了,我学的大数据分析可视化,学的主要有Python入门、sql、oracle、tableau、帆软、Informatica、Excel等等
我刚出来半年,视频录播可能还不算落后,有视频可***
⑷ 大数据的课程分析
大数据的课程主要是根据客户的一个需求推送客户生活当中所需的一些生活用品。淘宝主要就是根据这个大数据来做的一个分析
⑸ 哪些课程可以为大数据分析做知识储备
1、需要有应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景。
2、至少熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。
3、至少能够用Acess等进行数据库开发;
4、至少掌握一门数学软件:matalab,mathmatics进行新模型的构建。
⑹ 大数据课程都学什么啊
大数据课程自学习的内容有6个阶段:
1阶段
JavaSE基础核心
2阶段
数据库关键技术
3阶段
大数据基础核心
4阶段
Spark生态体系框架&大数据高薪精选项目
5阶段
Spark生态体系框架&企业无缝对接项目
6阶段
Flink流式数据处理框架
按照顺序学习就可以了,希望你早日学有所成。
⑺ 大数据专业课程有哪些
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑻ 大数据学习需要哪些课程
主修课程来:面向对象程自序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等
⑼ 大数据要学哪些课程
大数据存储阶段:百hbase、hive、sqoop。
大数度据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。
⑽ 大数据专业主要学什么课程
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。
Kafka:这是个比较好用的队列工具。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点。