当前位置:首页 » 学校课程 » 小学数学课程知识讲解

小学数学课程知识讲解

发布时间: 2021-02-19 08:10:17

『壹』 小学数学的课程内容

数学是日常生活和进一步学习必不可少的基础和工具。掌握一定的数学基础知识和基本技能,是我国公民应当具备的文化素养之一。
小学数学是义务教育的一门重要学科。从小给学生打好数学的初步基础,发展思维能力,培养创新意识、实践能力和学习数学的兴趣,养成良好的学习习惯,对于贯彻德、智、体全面发展的教育方针,培养有理想、有道德、有文化、有纪律的公民,提高全民族的素质,具有十分重要的意义。
二、教学目的和要求
教学目的
(1)使学生理解、掌握数量关系和几何图形的最基础的知识。
(2)使学生具有进行整数、小数、分数四则计算的能力,培养初步的思维能力和空间观念,能够探索和解决简单的实际问题。
(3)使学生具有学习数学的兴趣,树立学好数学的信心,受到思想品德教育。教学要求
使学生获得有关整数、小数、分数、百分数和比例的基础知识;常见的一些数量关系和解答应用题的方法;用字母表示数和简易方程、量与计量、简单几何图形、统计的一些初步知识。
使学生能够正确地进行整数、小数、分数的四则运算,对于其中一些基本的计算,要达到一定的熟练程度,并逐步做到计算方法合理、灵活。具有估算意识和初步的估算能力。
结合有关内容的教学,引导学生进行观察、操作、猜测,培养学生会进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理,逐步学会有条理、有根据地思考问题;同时注意思维的敏捷和灵活。
使学生逐步形成简单几何形体的形状、大小和相互位置关系的表象,能够识别所学的几何形体,并能根据几何形体的名称再现它们的表象,培养初步的空间观念。
培养学生观察和认识周围事物间的数量关系和形体特征的兴趣和意识,使学生感受数学与现实生活的密切联系,通过观察、操作、猜测等方式,培养学生的探索意识,使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。

『贰』 谁能详细归纳一下小学1~6年级的数学课程知识

周长公式:长方形周长=(长+宽)×2 C=2(a+b)

正方形周长=边长×4 C=4a

圆的周长=圆周率×直径 C=πd C =2πr

半圆的周长=圆周长的一半+直径 πr+d

面积公式:长方形面积=长×宽 S=ab

正方形面积=边长×边长 S=a2

平行四边形面积=底×高 S=ah

三角形面积=底×高÷2 S=ah÷2

梯形面积=(上底+下底)×高÷2 S=(a+b)h÷2

圆的面积=圆周率×半径的平方 S=πr2

圆柱的侧面积=底面周长×高 S=Ch

表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2

S=(ab+ah+bh)×2

正方体表面积=边长×边长×6 S=6a2

圆柱体侧面积=底面周长×高 S=C h

圆柱体表面积=侧面积+底面积×2 S=S侧+2 S底

体积公式:长方体体积=长×宽×高 V=abh

正方体体积=棱长×棱长×棱长 V=a3

圆柱体体积=底面积×高 V=Sh

(将近似长方体平放得到:圆柱体体积=侧面积的一半×半径 V=Ch÷2×r=2πr÷2×r=πr×r)

圆锥体体积=底面积×高÷3 V=Sh÷3或1/3Sh1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径 1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径

『叁』 小学数学校本课程讲义或者教案

http://www.isud.com.cn/soft/sort01/sort0355/down-11758.html
小学数学校本课程开发案(2)
课题:面积是多少
适用年级:三年级
知识背景:学生已经初步了解面积的含义,认识面积单位,并会计算长方形与正方形的面积。
设计目标:1、通过实践活动,加深对面积含义的理解,进一步了解面积与周长的区别与联系,初步探索一些不规则图形面积的计算方法。
2、在操作实践、交流讨论和解决问题的过程中培养创新意识,发展数学思考及合作交流的能力。
3、在各种不同的学习活动中,发展学生的空间观念,培养学生的估算意识,激发学生进一步学习和探索的兴趣。
设计说明:本案例由三部分组成,第一部分为“学习材料”,即学生上课使用的教材。其中“说一说”旨在引导学生对所学面积的知识进行整理和总结;“拼一拼”和“画一画”是书上例题和练习的拓展,旨在引导学生比较周长和面积的区别;“数一数”和“量一量”是两种基本的求面积的方法,旨在引导学生在活动中拓展思维;“估一估”是面积教学中一个重要内容,旨在引导学生在思考和交流中,形成初步的量的概念,提高学生的估算能力。本部分使用者则为学生;第二部分为“教学参考”,即教师根据本节课教学内容设计的主要教学过程,为教学此内容的教师提供参考,使用者为教师。第三部分为“教学反思”,即内容设计者在教学后对教学内容、教学效果等进行的综合思考和修改建议。

第一部分 学习材料
面积是多少
......

『肆』 小学数学课程的含义

通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数内学的基础知识容、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

『伍』 小学数学课程内容的构成

一、 课要树立新的课程理念

所以,在备课时同样体现在“理念决定思路,思路决定出路”.任何一次教育改革,无不以教育观念的变革为先导,教育每前进一步,无不依赖教育观念的突破,备课的改革也是一样.首先教师在思想观念上必须有突破和创新,可以说,没有教师教育思想上的一次重大转变,就不会有整个备课内容方法上的突破,真正树立.我们不仅要对学生今天的数学学习负责,更要对学生一生的发展和幸福.教师若真正确立了这样的理念,就会在备课上关注学生,只有将以上这些理念烂熟于心,教师们在备课中才能给自己的课堂教学重新定位,才能使我们的课堂教学与时俱进.

二、 课要明确学生的学习目标

“课标”在具体课程目标中提出了:“知识与技能、数学思考、解决问题、情感态度与价值观”四个方面的数学课程目标.通过知识与技能、态度的结合,知识与情感的结合,来实现课程的总体目标.在基础教育中,实施情感、态度与价值观的教育,是课程标准向我们提出的新目标要求.大家知道,数学枯燥无味.因此,在制定课时教学目标的把握上,除了“双基”目标外,还要注重:(1)每一节课都要重视对学生进行学习兴趣、习惯、方法的培养目标,落实这一主要目标比教学生掌握所学知识更为重要.它体现的是一种态度、一种情感,最后才是一种结果.例如:在教《“10以内数”的认识》这节课时,让孩子们认识了“10以内数”之后,迅速地将孩子们引进了一个精彩的世界-----

同学们,你们能用身边的事物说说你心目中的数字吗?老师用期待的目光扫视着全班同学,小手一个个地举起来了.x0d“我们教室里有‘1’块黑板.”

“ 我有一双勤劳的手,一共是10个手指头.”

“我的衣服上有5颗纽扣.”-------

老师巧妙的一问,让学生自然地把数学与身边的事物联系起来,科学的价值与意义就在生活之中,学生在不知不觉中接受了这一深奥的道理.在这种和谐的交流中,教师与学生之间,学生与学生之间的感情,得到了融洽与升华.

三、 课要提供丰富的学习资源.

为了适应新教材的编排特点是“具有基础性、丰富性和开放性”.给不同层次的学生留有学习空间,从而激发他们的学习兴趣.x0d教师必须深入钻研教材,充分挖掘蕴涵在数学知识中的数学思想.我们知道小学教材体系有两条线索:第一条是数学知识,这是写在教材上的明线;第二条是数学思想方法,这是教材编写的指导思想.是不很明确地写在教材中,是一条暗线.前者容易理解,后者不易看明.前者是教材写什么,后者是明确为什么要这样写.例如:“进位加法”的进位问题.从教材的表层不仅是出现几种不同的算法,在鼓励算法多样化的基础上,要提倡学习用“凑十法”进行计算,而深层次挖掘,我认为更重要的恐怕还是引导学生掌握以“十”为单位的计算的思想.这也更是后续学习的需要.

因为在人类历史的长河里,人类的认识经过两次飞跃.从逐一计数到按群计数是第一次飞跃.从按群计数到以“十”为单位计数是第二次飞跃.

三、 备课要找准教学的切入点.

《课程标准》明确指出:“数学教学活动必须建立在学生的认识发展水平和已有的知识经验基础上”,因此,备课时教师要能想到以下几个问题:

1、学生已经知道了什么?

2、学生自己已经解决了什么?

3、学生还想知道什么?

4、想知道这些问题,学生是否能通过合作来解决?

5、哪些问题需要教师的点拨和引导?

6、哪些疑难问题还需要拓展与延伸等.把这些问题弄清楚了,也就明确本节课中教学的切入点和主要完成的目标了.

以上所谈的几个方面,落到实处那就是:在课堂上,“学生的思路就是我们教学的线索,我们只是引导学生前进.过去以传授知识技能为主,现在我们以促进学生的终身发展为己任。

『陆』 小学数学新课程理念

小学数学新课程的基本理念

1、数学课程生活化

数学教学要从学生的生活经验和已有的知识出发,以学生从体验的和容易理解的现实问题为素材,并注意与学生已经了解和学生过的教学知识相联系,让学生在熟悉的事物和具体情境中,通过自主活动理解教学知识,建构数学知识结构。

2、让学生亲历数学知识的形成

学习数学唯一正确的方法是实行“再创造”,探究性学习强调学生通过自己参与类似于科学研究的学习活动,获得亲身体验,就是“再创造”。必须让学生看到数学知识形成和发展过程,亲身体验如何“做数学”。

3、转变学生的学习方式

《课程标准》指出:“学生的数学学习和活动应当是一个生动的,主动和具有个性的过程”。“动手实践,自主探索,与合作交流是学生学习数学的重要方式”。这是此次课改的核心理念。

4、教师要转变教学的方式

《课程标准》指出:“教师是数学学习的组织者,引导者与合作者”。在教学中,教师应精心组织课堂教学,有效地引导学生参与数学活动,真诚地与学生合作,共同创造一种新的课堂文化。

5、评价的根本是要促进学生的发展

新课程评价是关注学生的全面发展。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的教学和改进教师的教学,应建立评价目标多元化,评价方法多样化的评价体系。评价要关注学生的学习结果,更要关注他们在教学活动中所表现出来的情感与态度帮助学生认识自我,建立信心。

6、重视现代信息技术的应用

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919